| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  | 
						
							| 2 |  | efgval.r |  | 
						
							| 3 |  | efgval2.m |  | 
						
							| 4 |  | efgval2.t |  | 
						
							| 5 |  | efgred.d |  | 
						
							| 6 |  | efgred.s |  | 
						
							| 7 | 1 2 | efger |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 |  | simpl |  | 
						
							| 10 | 8 9 | ercl |  | 
						
							| 11 |  | wrd0 |  | 
						
							| 12 | 1 | efgrcl |  | 
						
							| 13 | 10 12 | syl |  | 
						
							| 14 | 13 | simprd |  | 
						
							| 15 | 11 14 | eleqtrrid |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 1 2 3 4 5 6 | efgcpbl |  | 
						
							| 18 | 10 15 16 17 | syl3anc |  | 
						
							| 19 | 10 14 | eleqtrd |  | 
						
							| 20 | 8 16 | ercl |  | 
						
							| 21 | 20 14 | eleqtrd |  | 
						
							| 22 |  | ccatcl |  | 
						
							| 23 | 19 21 22 | syl2anc |  | 
						
							| 24 |  | ccatrid |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 8 16 | ercl2 |  | 
						
							| 27 | 26 14 | eleqtrd |  | 
						
							| 28 |  | ccatcl |  | 
						
							| 29 | 19 27 28 | syl2anc |  | 
						
							| 30 |  | ccatrid |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 18 25 31 | 3brtr3d |  | 
						
							| 33 | 1 2 3 4 5 6 | efgcpbl |  | 
						
							| 34 | 15 26 9 33 | syl3anc |  | 
						
							| 35 |  | ccatlid |  | 
						
							| 36 | 19 35 | syl |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 8 9 | ercl2 |  | 
						
							| 39 | 38 14 | eleqtrd |  | 
						
							| 40 |  | ccatlid |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 | 41 | oveq1d |  | 
						
							| 43 | 34 37 42 | 3brtr3d |  | 
						
							| 44 | 8 32 43 | ertrd |  |