Metamath Proof Explorer


Theorem efgi2

Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
Assertion efgi2 AWBranTAA˙B

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 fveq2 a=ATa=TA
6 5 rneqd a=AranTa=ranTA
7 eceq1 a=Aar=Ar
8 6 7 sseq12d a=AranTaarranTAAr
9 8 rspcv AWaWranTaarranTAAr
10 9 adantr AWBranTAaWranTaarranTAAr
11 ssel ranTAArBranTABAr
12 11 com12 BranTAranTAArBAr
13 simpl BArAWBAr
14 elecg BArAWBArArB
15 13 14 mpbid BArAWArB
16 df-br ArBABr
17 15 16 sylib BArAWABr
18 17 expcom AWBArABr
19 12 18 sylan9r AWBranTAranTAArABr
20 10 19 syld AWBranTAaWranTaarABr
21 20 adantld AWBranTArErWaWranTaarABr
22 21 alrimiv AWBranTArrErWaWranTaarABr
23 opex ABV
24 23 elintab ABr|rErWaWranTaarrrErWaWranTaarABr
25 22 24 sylibr AWBranTAABr|rErWaWranTaar
26 1 2 3 4 efgval2 ˙=r|rErWaWranTaar
27 25 26 eleqtrrdi AWBranTAAB˙
28 df-br A˙BAB˙
29 27 28 sylibr AWBranTAA˙B