Metamath Proof Explorer


Theorem efif1o

Description: The exponential function of an imaginary number maps any open-below, closed-above interval of length 2 _pi one-to-one onto the unit circle. (Contributed by Paul Chapman, 16-Mar-2008) (Revised by Mario Carneiro, 13-May-2014)

Ref Expression
Hypotheses efif1o.1 F=wDeiw
efif1o.2 C=abs-11
efif1o.3 D=AA+2π
Assertion efif1o AF:D1-1 ontoC

Proof

Step Hyp Ref Expression
1 efif1o.1 F=wDeiw
2 efif1o.2 C=abs-11
3 efif1o.3 D=AA+2π
4 rexr AA*
5 2re 2
6 pire π
7 5 6 remulcli 2π
8 readdcl A2πA+2π
9 7 8 mpan2 AA+2π
10 elioc2 A*A+2πxAA+2πxA<xxA+2π
11 4 9 10 syl2anc AxAA+2πxA<xxA+2π
12 simp1 xA<xxA+2πx
13 11 12 syl6bi AxAA+2πx
14 13 ssrdv AAA+2π
15 3 14 eqsstrid AD
16 3 efif1olem1 AxDyDxy<2π
17 3 efif1olem2 AzyDzy2π
18 eqid sinπ2π2=sinπ2π2
19 1 2 15 16 17 18 efif1olem4 AF:D1-1 ontoC