Metamath Proof Explorer


Theorem efival

Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005)

Ref Expression
Assertion efival AeiA=cosA+isinA

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl iAiA
3 1 2 mpan AiA
4 efcl iAeiA
5 3 4 syl AeiA
6 negicn i
7 mulcl iAiA
8 6 7 mpan AiA
9 efcl iAeiA
10 8 9 syl AeiA
11 5 10 addcld AeiA+eiA
12 5 10 subcld AeiAeiA
13 2cn 2
14 2ne0 20
15 13 14 pm3.2i 220
16 divdir eiA+eiAeiAeiA220eiA+eiA+eiAeiA2=eiA+eiA2+eiAeiA2
17 15 16 mp3an3 eiA+eiAeiAeiAeiA+eiA+eiAeiA2=eiA+eiA2+eiAeiA2
18 11 12 17 syl2anc AeiA+eiA+eiAeiA2=eiA+eiA2+eiAeiA2
19 10 5 pncan3d AeiA+eiA-eiA=eiA
20 19 oveq2d AeiA+eiA+eiAeiA=eiA+eiA
21 5 10 12 addassd AeiA+eiA+eiAeiA=eiA+eiA+eiAeiA
22 5 2timesd A2eiA=eiA+eiA
23 20 21 22 3eqtr4d AeiA+eiA+eiAeiA=2eiA
24 23 oveq1d AeiA+eiA+eiAeiA2=2eiA2
25 divcan3 eiA2202eiA2=eiA
26 13 14 25 mp3an23 eiA2eiA2=eiA
27 5 26 syl A2eiA2=eiA
28 24 27 eqtr2d AeiA=eiA+eiA+eiAeiA2
29 cosval AcosA=eiA+eiA2
30 2mulicn 2i
31 2muline0 2i0
32 30 31 pm3.2i 2i2i0
33 div12 ieiAeiA2i2i0ieiAeiA2i=eiAeiAi2i
34 1 32 33 mp3an13 eiAeiAieiAeiA2i=eiAeiAi2i
35 12 34 syl AieiAeiA2i=eiAeiAi2i
36 sinval AsinA=eiAeiA2i
37 36 oveq2d AisinA=ieiAeiA2i
38 divrec eiAeiA220eiAeiA2=eiAeiA12
39 13 14 38 mp3an23 eiAeiAeiAeiA2=eiAeiA12
40 12 39 syl AeiAeiA2=eiAeiA12
41 1 mullidi 1i=i
42 41 oveq1i 1i2i=i2i
43 ine0 i0
44 1 43 dividi ii=1
45 44 oveq2i 12ii=121
46 ax-1cn 1
47 46 13 1 1 14 43 divmuldivi 12ii=1i2i
48 45 47 eqtr3i 121=1i2i
49 halfcn 12
50 49 mulridi 121=12
51 48 50 eqtr3i 1i2i=12
52 42 51 eqtr3i i2i=12
53 52 oveq2i eiAeiAi2i=eiAeiA12
54 40 53 eqtr4di AeiAeiA2=eiAeiAi2i
55 35 37 54 3eqtr4d AisinA=eiAeiA2
56 29 55 oveq12d AcosA+isinA=eiA+eiA2+eiAeiA2
57 18 28 56 3eqtr4d AeiA=cosA+isinA