Metamath Proof Explorer


Theorem eflt

Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007) (Revised by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion eflt ABA<BeA<eB

Proof

Step Hyp Ref Expression
1 tru
2 fveq2 x=yex=ey
3 fveq2 x=Aex=eA
4 fveq2 x=Bex=eB
5 ssid
6 reefcl xex
7 6 adantl xex
8 simp2 xyx<yy
9 simp1 xyx<yx
10 8 9 resubcld xyx<yyx
11 posdif xyx<y0<yx
12 11 biimp3a xyx<y0<yx
13 10 12 elrpd xyx<yyx+
14 efgt1 yx+1<eyx
15 13 14 syl xyx<y1<eyx
16 9 reefcld xyx<yex
17 10 reefcld xyx<yeyx
18 efgt0 x0<ex
19 9 18 syl xyx<y0<ex
20 ltmulgt11 exeyx0<ex1<eyxex<exeyx
21 16 17 19 20 syl3anc xyx<y1<eyxex<exeyx
22 15 21 mpbid xyx<yex<exeyx
23 9 recnd xyx<yx
24 10 recnd xyx<yyx
25 efadd xyxex+y-x=exeyx
26 23 24 25 syl2anc xyx<yex+y-x=exeyx
27 8 recnd xyx<yy
28 23 27 pncan3d xyx<yx+y-x=y
29 28 fveq2d xyx<yex+y-x=ey
30 26 29 eqtr3d xyx<yexeyx=ey
31 22 30 breqtrd xyx<yex<ey
32 31 3expia xyx<yex<ey
33 32 adantl xyx<yex<ey
34 2 3 4 5 7 33 ltord1 ABA<BeA<eB
35 1 34 mpan ABA<BeA<eB