Metamath Proof Explorer


Theorem efmndmnd

Description: The monoid of endofunctions on a set A is actually a monoid. (Contributed by AV, 31-Jan-2024)

Ref Expression
Hypothesis ielefmnd.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
Assertion efmndmnd AVGMnd

Proof

Step Hyp Ref Expression
1 ielefmnd.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 1 efmndsgrp Could not format G e. Smgrp : No typesetting found for |- G e. Smgrp with typecode |-
3 2 a1i Could not format ( A e. V -> G e. Smgrp ) : No typesetting found for |- ( A e. V -> G e. Smgrp ) with typecode |-
4 1 ielefmnd AVIABaseG
5 oveq1 i=IAi+Gf=IA+Gf
6 5 eqeq1d i=IAi+Gf=fIA+Gf=f
7 oveq2 i=IAf+Gi=f+GIA
8 7 eqeq1d i=IAf+Gi=ff+GIA=f
9 6 8 anbi12d i=IAi+Gf=ff+Gi=fIA+Gf=ff+GIA=f
10 9 ralbidv i=IAfBaseGi+Gf=ff+Gi=ffBaseGIA+Gf=ff+GIA=f
11 10 adantl AVi=IAfBaseGi+Gf=ff+Gi=ffBaseGIA+Gf=ff+GIA=f
12 eqid BaseG=BaseG
13 1 12 efmndbasf fBaseGf:AA
14 13 adantl AVfBaseGf:AA
15 fcoi2 f:AAIAf=f
16 fcoi1 f:AAfIA=f
17 15 16 jca f:AAIAf=ffIA=f
18 14 17 syl AVfBaseGIAf=ffIA=f
19 eqid +G=+G
20 1 12 19 efmndov IABaseGfBaseGIA+Gf=IAf
21 4 20 sylan AVfBaseGIA+Gf=IAf
22 21 eqeq1d AVfBaseGIA+Gf=fIAf=f
23 4 anim1ci AVfBaseGfBaseGIABaseG
24 1 12 19 efmndov fBaseGIABaseGf+GIA=fIA
25 23 24 syl AVfBaseGf+GIA=fIA
26 25 eqeq1d AVfBaseGf+GIA=ffIA=f
27 22 26 anbi12d AVfBaseGIA+Gf=ff+GIA=fIAf=ffIA=f
28 18 27 mpbird AVfBaseGIA+Gf=ff+GIA=f
29 28 ralrimiva AVfBaseGIA+Gf=ff+GIA=f
30 4 11 29 rspcedvd AViBaseGfBaseGi+Gf=ff+Gi=f
31 12 19 ismnddef Could not format ( G e. Mnd <-> ( G e. Smgrp /\ E. i e. ( Base ` G ) A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) ) ) : No typesetting found for |- ( G e. Mnd <-> ( G e. Smgrp /\ E. i e. ( Base ` G ) A. f e. ( Base ` G ) ( ( i ( +g ` G ) f ) = f /\ ( f ( +g ` G ) i ) = f ) ) ) with typecode |-
32 3 30 31 sylanbrc AVGMnd