Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ehl2eudisval0.e | |
|
ehl2eudisval0.x | |
||
ehl2eudisval0.d | |
||
ehl2eudisval0.0 | |
||
Assertion | ehl2eudis0lt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl2eudisval0.e | |
|
2 | ehl2eudisval0.x | |
|
3 | ehl2eudisval0.d | |
|
4 | ehl2eudisval0.0 | |
|
5 | 1 2 3 4 | ehl2eudisval0 | |
6 | 5 | adantr | |
7 | 6 | breq1d | |
8 | eqid | |
|
9 | 8 2 | rrx2pxel | |
10 | 8 2 | rrx2pyel | |
11 | eqid | |
|
12 | 11 | resum2sqcl | |
13 | 9 10 12 | syl2anc | |
14 | resqcl | |
|
15 | resqcl | |
|
16 | 14 15 | anim12i | |
17 | sqge0 | |
|
18 | sqge0 | |
|
19 | 17 18 | anim12i | |
20 | addge0 | |
|
21 | 16 19 20 | syl2anc | |
22 | 9 10 21 | syl2anc | |
23 | 13 22 | resqrtcld | |
24 | 13 22 | sqrtge0d | |
25 | 23 24 | jca | |
26 | rprege0 | |
|
27 | lt2sq | |
|
28 | 25 26 27 | syl2an | |
29 | 13 22 | jca | |
30 | 29 | adantr | |
31 | resqrtth | |
|
32 | 30 31 | syl | |
33 | 32 | breq1d | |
34 | 7 28 33 | 3bitrd | |