Metamath Proof Explorer


Theorem ehl2eudis0lt

Description: An upper bound of the Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 9-May-2023)

Ref Expression
Hypotheses ehl2eudisval0.e E=𝔼hil2
ehl2eudisval0.x X=12
ehl2eudisval0.d D=distE
ehl2eudisval0.0 0˙=12×0
Assertion ehl2eudis0lt FXR+FD0˙<RF12+F22<R2

Proof

Step Hyp Ref Expression
1 ehl2eudisval0.e E=𝔼hil2
2 ehl2eudisval0.x X=12
3 ehl2eudisval0.d D=distE
4 ehl2eudisval0.0 0˙=12×0
5 1 2 3 4 ehl2eudisval0 FXFD0˙=F12+F22
6 5 adantr FXR+FD0˙=F12+F22
7 6 breq1d FXR+FD0˙<RF12+F22<R
8 eqid 12=12
9 8 2 rrx2pxel FXF1
10 8 2 rrx2pyel FXF2
11 eqid F12+F22=F12+F22
12 11 resum2sqcl F1F2F12+F22
13 9 10 12 syl2anc FXF12+F22
14 resqcl F1F12
15 resqcl F2F22
16 14 15 anim12i F1F2F12F22
17 sqge0 F10F12
18 sqge0 F20F22
19 17 18 anim12i F1F20F120F22
20 addge0 F12F220F120F220F12+F22
21 16 19 20 syl2anc F1F20F12+F22
22 9 10 21 syl2anc FX0F12+F22
23 13 22 resqrtcld FXF12+F22
24 13 22 sqrtge0d FX0F12+F22
25 23 24 jca FXF12+F220F12+F22
26 rprege0 R+R0R
27 lt2sq F12+F220F12+F22R0RF12+F22<RF12+F222<R2
28 25 26 27 syl2an FXR+F12+F22<RF12+F222<R2
29 13 22 jca FXF12+F220F12+F22
30 29 adantr FXR+F12+F220F12+F22
31 resqrtth F12+F220F12+F22F12+F222=F12+F22
32 30 31 syl FXR+F12+F222=F12+F22
33 32 breq1d FXR+F12+F222<R2F12+F22<R2
34 7 28 33 3bitrd FXR+FD0˙<RF12+F22<R2