Metamath Proof Explorer


Theorem elbigo2r

Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020)

Ref Expression
Assertion elbigo2r G : A A F : B B A C M x B C x F x M G x F O G

Proof

Step Hyp Ref Expression
1 breq1 y = C y x C x
2 1 imbi1d y = C y x F x m G x C x F x m G x
3 2 ralbidv y = C x B y x F x m G x x B C x F x m G x
4 oveq1 m = M m G x = M G x
5 4 breq2d m = M F x m G x F x M G x
6 5 imbi2d m = M C x F x m G x C x F x M G x
7 6 ralbidv m = M x B C x F x m G x x B C x F x M G x
8 3 7 rspc2ev C M x B C x F x M G x y m x B y x F x m G x
9 8 3ad2ant3 G : A A F : B B A C M x B C x F x M G x y m x B y x F x m G x
10 elbigo2 G : A A F : B B A F O G y m x B y x F x m G x
11 10 3adant3 G : A A F : B B A C M x B C x F x M G x F O G y m x B y x F x m G x
12 9 11 mpbird G : A A F : B B A C M x B C x F x M G x F O G