Metamath Proof Explorer


Theorem eldm3

Description: Quantifier-free definition of membership in a domain. (Contributed by Scott Fenton, 21-Jan-2017)

Ref Expression
Assertion eldm3 AdomBBA

Proof

Step Hyp Ref Expression
1 elex AdomBAV
2 snprc ¬AVA=
3 reseq2 A=BA=B
4 res0 B=
5 3 4 eqtrdi A=BA=
6 2 5 sylbi ¬AVBA=
7 6 necon1ai BAAV
8 eleq1 x=AxdomBAdomB
9 sneq x=Ax=A
10 9 reseq2d x=ABx=BA
11 10 neeq1d x=ABxBA
12 dfclel xyBpp=xypB
13 12 exbii yxyBypp=xypB
14 vex xV
15 14 eldm2 xdomByxyB
16 n0 BxppBx
17 elres pBxzxyp=zyzyB
18 eleq1 p=zypBzyB
19 18 pm5.32i p=zypBp=zyzyB
20 opeq1 z=xzy=xy
21 20 eqeq2d z=xp=zyp=xy
22 21 anbi1d z=xp=zypBp=xypB
23 19 22 bitr3id z=xp=zyzyBp=xypB
24 23 exbidv z=xyp=zyzyByp=xypB
25 14 24 rexsn zxyp=zyzyByp=xypB
26 17 25 bitri pBxyp=xypB
27 26 exbii ppBxpyp=xypB
28 excom pyp=xypBypp=xypB
29 16 27 28 3bitri Bxypp=xypB
30 13 15 29 3bitr4i xdomBBx
31 8 11 30 vtoclbg AVAdomBBA
32 1 7 31 pm5.21nii AdomBBA