| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. dom B -> A e. _V ) |
| 2 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
| 3 |
|
reseq2 |
|- ( { A } = (/) -> ( B |` { A } ) = ( B |` (/) ) ) |
| 4 |
|
res0 |
|- ( B |` (/) ) = (/) |
| 5 |
3 4
|
eqtrdi |
|- ( { A } = (/) -> ( B |` { A } ) = (/) ) |
| 6 |
2 5
|
sylbi |
|- ( -. A e. _V -> ( B |` { A } ) = (/) ) |
| 7 |
6
|
necon1ai |
|- ( ( B |` { A } ) =/= (/) -> A e. _V ) |
| 8 |
|
eleq1 |
|- ( x = A -> ( x e. dom B <-> A e. dom B ) ) |
| 9 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
| 10 |
9
|
reseq2d |
|- ( x = A -> ( B |` { x } ) = ( B |` { A } ) ) |
| 11 |
10
|
neeq1d |
|- ( x = A -> ( ( B |` { x } ) =/= (/) <-> ( B |` { A } ) =/= (/) ) ) |
| 12 |
|
dfclel |
|- ( <. x , y >. e. B <-> E. p ( p = <. x , y >. /\ p e. B ) ) |
| 13 |
12
|
exbii |
|- ( E. y <. x , y >. e. B <-> E. y E. p ( p = <. x , y >. /\ p e. B ) ) |
| 14 |
|
vex |
|- x e. _V |
| 15 |
14
|
eldm2 |
|- ( x e. dom B <-> E. y <. x , y >. e. B ) |
| 16 |
|
n0 |
|- ( ( B |` { x } ) =/= (/) <-> E. p p e. ( B |` { x } ) ) |
| 17 |
|
elres |
|- ( p e. ( B |` { x } ) <-> E. z e. { x } E. y ( p = <. z , y >. /\ <. z , y >. e. B ) ) |
| 18 |
|
eleq1 |
|- ( p = <. z , y >. -> ( p e. B <-> <. z , y >. e. B ) ) |
| 19 |
18
|
pm5.32i |
|- ( ( p = <. z , y >. /\ p e. B ) <-> ( p = <. z , y >. /\ <. z , y >. e. B ) ) |
| 20 |
|
opeq1 |
|- ( z = x -> <. z , y >. = <. x , y >. ) |
| 21 |
20
|
eqeq2d |
|- ( z = x -> ( p = <. z , y >. <-> p = <. x , y >. ) ) |
| 22 |
21
|
anbi1d |
|- ( z = x -> ( ( p = <. z , y >. /\ p e. B ) <-> ( p = <. x , y >. /\ p e. B ) ) ) |
| 23 |
19 22
|
bitr3id |
|- ( z = x -> ( ( p = <. z , y >. /\ <. z , y >. e. B ) <-> ( p = <. x , y >. /\ p e. B ) ) ) |
| 24 |
23
|
exbidv |
|- ( z = x -> ( E. y ( p = <. z , y >. /\ <. z , y >. e. B ) <-> E. y ( p = <. x , y >. /\ p e. B ) ) ) |
| 25 |
14 24
|
rexsn |
|- ( E. z e. { x } E. y ( p = <. z , y >. /\ <. z , y >. e. B ) <-> E. y ( p = <. x , y >. /\ p e. B ) ) |
| 26 |
17 25
|
bitri |
|- ( p e. ( B |` { x } ) <-> E. y ( p = <. x , y >. /\ p e. B ) ) |
| 27 |
26
|
exbii |
|- ( E. p p e. ( B |` { x } ) <-> E. p E. y ( p = <. x , y >. /\ p e. B ) ) |
| 28 |
|
excom |
|- ( E. p E. y ( p = <. x , y >. /\ p e. B ) <-> E. y E. p ( p = <. x , y >. /\ p e. B ) ) |
| 29 |
16 27 28
|
3bitri |
|- ( ( B |` { x } ) =/= (/) <-> E. y E. p ( p = <. x , y >. /\ p e. B ) ) |
| 30 |
13 15 29
|
3bitr4i |
|- ( x e. dom B <-> ( B |` { x } ) =/= (/) ) |
| 31 |
8 11 30
|
vtoclbg |
|- ( A e. _V -> ( A e. dom B <-> ( B |` { A } ) =/= (/) ) ) |
| 32 |
1 7 31
|
pm5.21nii |
|- ( A e. dom B <-> ( B |` { A } ) =/= (/) ) |