Metamath Proof Explorer


Theorem elfg

Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion elfg FfBasXAXfilGenFAXxFxA

Proof

Step Hyp Ref Expression
1 fgval FfBasXXfilGenF=y𝒫X|F𝒫y
2 1 eleq2d FfBasXAXfilGenFAy𝒫X|F𝒫y
3 pweq y=A𝒫y=𝒫A
4 3 ineq2d y=AF𝒫y=F𝒫A
5 4 neeq1d y=AF𝒫yF𝒫A
6 5 elrab Ay𝒫X|F𝒫yA𝒫XF𝒫A
7 elfvdm FfBasXXdomfBas
8 elpw2g XdomfBasA𝒫XAX
9 7 8 syl FfBasXA𝒫XAX
10 elin xF𝒫AxFx𝒫A
11 velpw x𝒫AxA
12 11 anbi2i xFx𝒫AxFxA
13 10 12 bitri xF𝒫AxFxA
14 13 exbii xxF𝒫AxxFxA
15 n0 F𝒫AxxF𝒫A
16 df-rex xFxAxxFxA
17 14 15 16 3bitr4i F𝒫AxFxA
18 17 a1i FfBasXF𝒫AxFxA
19 9 18 anbi12d FfBasXA𝒫XF𝒫AAXxFxA
20 6 19 bitrid FfBasXAy𝒫X|F𝒫yAXxFxA
21 2 20 bitrd FfBasXAXfilGenFAXxFxA