| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz2nn0 |
|
| 2 |
|
elfz2 |
|
| 3 |
|
simpr1 |
|
| 4 |
|
elnn0z |
|
| 5 |
|
simpr |
|
| 6 |
|
0z |
|
| 7 |
|
zletr |
|
| 8 |
6 7
|
mp3an1 |
|
| 9 |
|
elnn0z |
|
| 10 |
9
|
simplbi2 |
|
| 11 |
5 8 10
|
sylsyld |
|
| 12 |
11
|
expd |
|
| 13 |
12
|
impancom |
|
| 14 |
4 13
|
sylbi |
|
| 15 |
14
|
com13 |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
com12 |
|
| 18 |
17
|
3ad2ant3 |
|
| 19 |
18
|
imp |
|
| 20 |
19
|
com12 |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
21
|
impcom |
|
| 23 |
|
simplrl |
|
| 24 |
3 22 23
|
3jca |
|
| 25 |
24
|
ex |
|
| 26 |
2 25
|
sylbi |
|
| 27 |
26
|
com12 |
|
| 28 |
1 27
|
sylbi |
|
| 29 |
28
|
imp |
|
| 30 |
|
elfz2nn0 |
|
| 31 |
29 30
|
sylibr |
|