Metamath Proof Explorer


Theorem elgch

Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion elgch AVAGCHAFinx¬Axx𝒫A

Proof

Step Hyp Ref Expression
1 df-gch GCH=Finy|x¬yxx𝒫y
2 1 eleq2i AGCHAFiny|x¬yxx𝒫y
3 elun AFiny|x¬yxx𝒫yAFinAy|x¬yxx𝒫y
4 2 3 bitri AGCHAFinAy|x¬yxx𝒫y
5 breq1 y=AyxAx
6 pweq y=A𝒫y=𝒫A
7 6 breq2d y=Ax𝒫yx𝒫A
8 5 7 anbi12d y=Ayxx𝒫yAxx𝒫A
9 8 notbid y=A¬yxx𝒫y¬Axx𝒫A
10 9 albidv y=Ax¬yxx𝒫yx¬Axx𝒫A
11 10 elabg AVAy|x¬yxx𝒫yx¬Axx𝒫A
12 11 orbi2d AVAFinAy|x¬yxx𝒫yAFinx¬Axx𝒫A
13 4 12 bitrid AVAGCHAFinx¬Axx𝒫A