| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eliccelioc.a |  | 
						
							| 2 |  | eliccelioc.b |  | 
						
							| 3 |  | eliccelioc.c |  | 
						
							| 4 |  | iocssicc |  | 
						
							| 5 | 4 | sseli |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 1 | adantr |  | 
						
							| 8 | 1 | rexrd |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 2 | adantr |  | 
						
							| 11 | 10 | rexrd |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | iocgtlb |  | 
						
							| 14 | 9 11 12 13 | syl3anc |  | 
						
							| 15 | 7 14 | gtned |  | 
						
							| 16 | 6 15 | jca |  | 
						
							| 17 | 8 | adantr |  | 
						
							| 18 | 2 | rexrd |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 3 | adantr |  | 
						
							| 21 | 1 | adantr |  | 
						
							| 22 | 1 2 | iccssred |  | 
						
							| 23 | 22 | sselda |  | 
						
							| 24 | 23 | adantrr |  | 
						
							| 25 | 8 | adantr |  | 
						
							| 26 | 18 | adantr |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 |  | iccgelb |  | 
						
							| 29 | 25 26 27 28 | syl3anc |  | 
						
							| 30 | 29 | adantrr |  | 
						
							| 31 |  | simprr |  | 
						
							| 32 | 21 24 30 31 | leneltd |  | 
						
							| 33 |  | iccleub |  | 
						
							| 34 | 25 26 27 33 | syl3anc |  | 
						
							| 35 | 34 | adantrr |  | 
						
							| 36 | 17 19 20 32 35 | eliocd |  | 
						
							| 37 | 16 36 | impbida |  |