Metamath Proof Explorer


Theorem elintfv

Description: Membership in an intersection of function values. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Hypothesis elintfv.1 XV
Assertion elintfv FFnABAXFByBXFy

Proof

Step Hyp Ref Expression
1 elintfv.1 XV
2 1 elint XFBzzFBXz
3 fvelimab FFnABAzFByBFy=z
4 3 imbi1d FFnABAzFBXzyBFy=zXz
5 r19.23v yBFy=zXzyBFy=zXz
6 4 5 bitr4di FFnABAzFBXzyBFy=zXz
7 6 albidv FFnABAzzFBXzzyBFy=zXz
8 ralcom4 yBzFy=zXzzyBFy=zXz
9 eqcom Fy=zz=Fy
10 9 imbi1i Fy=zXzz=FyXz
11 10 albii zFy=zXzzz=FyXz
12 fvex FyV
13 eleq2 z=FyXzXFy
14 12 13 ceqsalv zz=FyXzXFy
15 11 14 bitri zFy=zXzXFy
16 15 ralbii yBzFy=zXzyBXFy
17 8 16 bitr3i zyBFy=zXzyBXFy
18 7 17 bitrdi FFnABAzzFBXzyBXFy
19 2 18 bitrid FFnABAXFByBXFy