Metamath Proof Explorer


Theorem ello1mpt

Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses ello1mpt.1 φA
ello1mpt.2 φxAB
Assertion ello1mpt φxAB𝑂1ymxAyxBm

Proof

Step Hyp Ref Expression
1 ello1mpt.1 φA
2 ello1mpt.2 φxAB
3 2 fmpttd φxAB:A
4 ello12 xAB:AAxAB𝑂1ymzAyzxABzm
5 3 1 4 syl2anc φxAB𝑂1ymzAyzxABzm
6 nfv xyz
7 nffvmpt1 _xxABz
8 nfcv _x
9 nfcv _xm
10 7 8 9 nfbr xxABzm
11 6 10 nfim xyzxABzm
12 nfv zyxxABxm
13 breq2 z=xyzyx
14 fveq2 z=xxABz=xABx
15 14 breq1d z=xxABzmxABxm
16 13 15 imbi12d z=xyzxABzmyxxABxm
17 11 12 16 cbvralw zAyzxABzmxAyxxABxm
18 simpr φxAxA
19 eqid xAB=xAB
20 19 fvmpt2 xABxABx=B
21 18 2 20 syl2anc φxAxABx=B
22 21 breq1d φxAxABxmBm
23 22 imbi2d φxAyxxABxmyxBm
24 23 ralbidva φxAyxxABxmxAyxBm
25 17 24 bitrid φzAyzxABzmxAyxBm
26 25 2rexbidv φymzAyzxABzmymxAyxBm
27 5 26 bitrd φxAB𝑂1ymxAyxBm