Metamath Proof Explorer


Theorem elmade

Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion elmade Could not format assertion : No typesetting found for |- ( A e. On -> ( X e. ( _Made ` A ) <-> E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <

Proof

Step Hyp Ref Expression
1 madef Could not format _Made : On --> ~P No : No typesetting found for |- _Made : On --> ~P No with typecode |-
2 1 ffvelcdmi Could not format ( A e. On -> ( _Made ` A ) e. ~P No ) : No typesetting found for |- ( A e. On -> ( _Made ` A ) e. ~P No ) with typecode |-
3 2 elpwid Could not format ( A e. On -> ( _Made ` A ) C_ No ) : No typesetting found for |- ( A e. On -> ( _Made ` A ) C_ No ) with typecode |-
4 3 sseld Could not format ( A e. On -> ( X e. ( _Made ` A ) -> X e. No ) ) : No typesetting found for |- ( A e. On -> ( X e. ( _Made ` A ) -> X e. No ) ) with typecode |-
5 scutcl lsrl|srNo
6 eleq1 l|sr=Xl|srNoXNo
7 6 biimpd l|sr=Xl|srNoXNo
8 5 7 mpan9 lsrl|sr=XXNo
9 8 rexlimivw Could not format ( E. r e. ~P U. ( _Made " A ) ( l < X e. No ) : No typesetting found for |- ( E. r e. ~P U. ( _Made " A ) ( l < X e. No ) with typecode |-
10 9 rexlimivw Could not format ( E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < X e. No ) : No typesetting found for |- ( E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < X e. No ) with typecode |-
11 10 a1i Could not format ( A e. On -> ( E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < X e. No ) ) : No typesetting found for |- ( A e. On -> ( E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < X e. No ) ) with typecode |-
12 madeval2 Could not format ( A e. On -> ( _Made ` A ) = { x e. No | E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < ( _Made ` A ) = { x e. No | E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <
13 12 eleq2d Could not format ( A e. On -> ( X e. ( _Made ` A ) <-> X e. { x e. No | E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < ( X e. ( _Made ` A ) <-> X e. { x e. No | E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <
14 eqeq2 x=Xl|sr=xl|sr=X
15 14 anbi2d x=Xlsrl|sr=xlsrl|sr=X
16 15 2rexbidv Could not format ( x = X -> ( E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < ( E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <
17 16 elrab3 Could not format ( X e. No -> ( X e. { x e. No | E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < ( X e. { x e. No | E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <
18 13 17 sylan9bb Could not format ( ( A e. On /\ X e. No ) -> ( X e. ( _Made ` A ) <-> E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < ( X e. ( _Made ` A ) <-> E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <
19 18 ex Could not format ( A e. On -> ( X e. No -> ( X e. ( _Made ` A ) <-> E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < ( X e. No -> ( X e. ( _Made ` A ) <-> E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <
20 4 11 19 pm5.21ndd Could not format ( A e. On -> ( X e. ( _Made ` A ) <-> E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l < ( X e. ( _Made ` A ) <-> E. l e. ~P U. ( _Made " A ) E. r e. ~P U. ( _Made " A ) ( l <