Metamath Proof Explorer


Theorem elmapresaun

Description: fresaun transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion elmapresaun FCAGCBFAB=GABFGCAB

Proof

Step Hyp Ref Expression
1 elmapi FCAF:AC
2 elmapi GCBG:BC
3 id FAB=GABFAB=GAB
4 fresaun F:ACG:BCFAB=GABFG:ABC
5 1 2 3 4 syl3an FCAGCBFAB=GABFG:ABC
6 elmapex FCACVAV
7 6 simpld FCACV
8 7 3ad2ant1 FCAGCBFAB=GABCV
9 6 simprd FCAAV
10 elmapex GCBCVBV
11 10 simprd GCBBV
12 unexg AVBVABV
13 9 11 12 syl2an FCAGCBABV
14 13 3adant3 FCAGCBFAB=GABABV
15 8 14 elmapd FCAGCBFAB=GABFGCABFG:ABC
16 5 15 mpbird FCAGCBFAB=GABFGCAB