Metamath Proof Explorer


Theorem elno2

Description: An alternative condition for membership in No . (Contributed by Scott Fenton, 21-Mar-2012)

Ref Expression
Assertion elno2 ANoFunAdomAOnranA1𝑜2𝑜

Proof

Step Hyp Ref Expression
1 nofun ANoFunA
2 nodmon ANodomAOn
3 norn ANoranA1𝑜2𝑜
4 1 2 3 3jca ANoFunAdomAOnranA1𝑜2𝑜
5 simp2 FunAdomAOnranA1𝑜2𝑜domAOn
6 simpl FunAdomAOnFunA
7 6 funfnd FunAdomAOnAFndomA
8 7 anim1i FunAdomAOnranA1𝑜2𝑜AFndomAranA1𝑜2𝑜
9 8 3impa FunAdomAOnranA1𝑜2𝑜AFndomAranA1𝑜2𝑜
10 df-f A:domA1𝑜2𝑜AFndomAranA1𝑜2𝑜
11 9 10 sylibr FunAdomAOnranA1𝑜2𝑜A:domA1𝑜2𝑜
12 feq2 x=domAA:x1𝑜2𝑜A:domA1𝑜2𝑜
13 12 rspcev domAOnA:domA1𝑜2𝑜xOnA:x1𝑜2𝑜
14 5 11 13 syl2anc FunAdomAOnranA1𝑜2𝑜xOnA:x1𝑜2𝑜
15 elno ANoxOnA:x1𝑜2𝑜
16 14 15 sylibr FunAdomAOnranA1𝑜2𝑜ANo
17 4 16 impbii ANoFunAdomAOnranA1𝑜2𝑜