Metamath Proof Explorer


Theorem elpell14qr2

Description: A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion elpell14qr2 DAPell14QRDAPell1234QRD0<A

Proof

Step Hyp Ref Expression
1 pell14qrss1234 DPell14QRDPell1234QRD
2 1 sselda DAPell14QRDAPell1234QRD
3 pell14qrgt0 DAPell14QRD0<A
4 2 3 jca DAPell14QRDAPell1234QRD0<A
5 0re 0
6 pell1234qrre DAPell1234QRDA
7 ltnsym 0A0<A¬A<0
8 5 6 7 sylancr DAPell1234QRD0<A¬A<0
9 8 impr DAPell1234QRD0<A¬A<0
10 6 adantrr DAPell1234QRD0<AA
11 10 lt0neg1d DAPell1234QRD0<AA<00<A
12 9 11 mtbid DAPell1234QRD0<A¬0<A
13 pell14qrgt0 DAPell14QRD0<A
14 13 ex DAPell14QRD0<A
15 14 adantr DAPell1234QRD0<AAPell14QRD0<A
16 12 15 mtod DAPell1234QRD0<A¬APell14QRD
17 pell1234qrdich DAPell1234QRDAPell14QRDAPell14QRD
18 17 adantrr DAPell1234QRD0<AAPell14QRDAPell14QRD
19 orel2 ¬APell14QRDAPell14QRDAPell14QRDAPell14QRD
20 16 18 19 sylc DAPell1234QRD0<AAPell14QRD
21 4 20 impbida DAPell14QRDAPell1234QRD0<A