Metamath Proof Explorer


Theorem elrab3t

Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 .) (Contributed by Thierry Arnoux, 31-Aug-2017)

Ref Expression
Assertion elrab3t x x = A φ ψ A B A x B | φ ψ

Proof

Step Hyp Ref Expression
1 df-rab x B | φ = x | x B φ
2 1 eleq2i A x B | φ A x | x B φ
3 id A B A B
4 nfa1 x x x = A φ ψ
5 nfv x A B
6 4 5 nfan x x x = A φ ψ A B
7 sp x x = A φ ψ x = A φ ψ
8 eleq1 x = A x B A B
9 8 biimparc A B x = A x B
10 9 biantrurd A B x = A φ x B φ
11 10 bibi1d A B x = A φ ψ x B φ ψ
12 11 pm5.74da A B x = A φ ψ x = A x B φ ψ
13 7 12 syl5ibcom x x = A φ ψ A B x = A x B φ ψ
14 13 imp x x = A φ ψ A B x = A x B φ ψ
15 6 14 alrimi x x = A φ ψ A B x x = A x B φ ψ
16 elabgt A B x x = A x B φ ψ A x | x B φ ψ
17 3 15 16 syl2an2 x x = A φ ψ A B A x | x B φ ψ
18 2 17 bitrid x x = A φ ψ A B A x B | φ ψ