Metamath Proof Explorer


Theorem elrab3t

Description: Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 .) (Contributed by Thierry Arnoux, 31-Aug-2017)

Ref Expression
Assertion elrab3t xx=AφψABAxB|φψ

Proof

Step Hyp Ref Expression
1 df-rab xB|φ=x|xBφ
2 1 eleq2i AxB|φAx|xBφ
3 id ABAB
4 nfa1 xxx=Aφψ
5 nfv xAB
6 4 5 nfan xxx=AφψAB
7 sp xx=Aφψx=Aφψ
8 eleq1 x=AxBAB
9 8 biimparc ABx=AxB
10 9 biantrurd ABx=AφxBφ
11 10 bibi1d ABx=AφψxBφψ
12 11 pm5.74da ABx=Aφψx=AxBφψ
13 7 12 syl5ibcom xx=AφψABx=AxBφψ
14 13 imp xx=AφψABx=AxBφψ
15 6 14 alrimi xx=AφψABxx=AxBφψ
16 elabgt ABxx=AxBφψAx|xBφψ
17 3 15 16 syl2an2 xx=AφψABAx|xBφψ
18 2 17 bitrid xx=AφψABAxB|φψ