Metamath Proof Explorer


Theorem elreal2

Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion elreal2 A1stA𝑹A=1stA0𝑹

Proof

Step Hyp Ref Expression
1 df-r =𝑹×0𝑹
2 1 eleq2i AA𝑹×0𝑹
3 xp1st A𝑹×0𝑹1stA𝑹
4 1st2nd2 A𝑹×0𝑹A=1stA2ndA
5 xp2nd A𝑹×0𝑹2ndA0𝑹
6 elsni 2ndA0𝑹2ndA=0𝑹
7 5 6 syl A𝑹×0𝑹2ndA=0𝑹
8 7 opeq2d A𝑹×0𝑹1stA2ndA=1stA0𝑹
9 4 8 eqtrd A𝑹×0𝑹A=1stA0𝑹
10 3 9 jca A𝑹×0𝑹1stA𝑹A=1stA0𝑹
11 eleq1 A=1stA0𝑹A𝑹×0𝑹1stA0𝑹𝑹×0𝑹
12 0r 0𝑹𝑹
13 12 elexi 0𝑹V
14 13 snid 0𝑹0𝑹
15 opelxp 1stA0𝑹𝑹×0𝑹1stA𝑹0𝑹0𝑹
16 14 15 mpbiran2 1stA0𝑹𝑹×0𝑹1stA𝑹
17 11 16 bitrdi A=1stA0𝑹A𝑹×0𝑹1stA𝑹
18 17 biimparc 1stA𝑹A=1stA0𝑹A𝑹×0𝑹
19 10 18 impbii A𝑹×0𝑹1stA𝑹A=1stA0𝑹
20 2 19 bitri A1stA𝑹A=1stA0𝑹