Metamath Proof Explorer


Theorem elzrhunit

Description: Condition for the image by ZRHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses zrhker.0 B = Base R
zrhker.1 L = ℤRHom R
zrhker.2 0 ˙ = 0 R
Assertion elzrhunit R DivRing chr R = 0 M M 0 L M Unit R

Proof

Step Hyp Ref Expression
1 zrhker.0 B = Base R
2 zrhker.1 L = ℤRHom R
3 zrhker.2 0 ˙ = 0 R
4 simpll R DivRing chr R = 0 M M 0 R DivRing
5 drngring R DivRing R Ring
6 2 zrhrhm R Ring L ring RingHom R
7 zringbas = Base ring
8 7 1 rhmf L ring RingHom R L : B
9 ffn L : B L Fn
10 6 8 9 3syl R Ring L Fn
11 4 5 10 3syl R DivRing chr R = 0 M M 0 L Fn
12 simprl R DivRing chr R = 0 M M 0 M
13 elsng M M 0 M = 0
14 13 necon3bbid M ¬ M 0 M 0
15 14 biimpar M M 0 ¬ M 0
16 15 adantl R DivRing chr R = 0 M M 0 ¬ M 0
17 12 16 eldifd R DivRing chr R = 0 M M 0 M 0
18 1 2 3 zrhunitpreima R DivRing chr R = 0 L -1 Unit R = 0
19 18 adantr R DivRing chr R = 0 M M 0 L -1 Unit R = 0
20 17 19 eleqtrrd R DivRing chr R = 0 M M 0 M L -1 Unit R
21 elpreima L Fn M L -1 Unit R M L M Unit R
22 21 simplbda L Fn M L -1 Unit R L M Unit R
23 11 20 22 syl2anc R DivRing chr R = 0 M M 0 L M Unit R