Metamath Proof Explorer


Theorem en1OLD

Description: Obsolete version of en1 as of 23-Sep-2024. (Contributed by NM, 25-Jul-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion en1OLD A1𝑜xA=x

Proof

Step Hyp Ref Expression
1 df1o2 1𝑜=
2 1 breq2i A1𝑜A
3 bren Aff:A1-1 onto
4 2 3 bitri A1𝑜ff:A1-1 onto
5 f1ocnv f:A1-1 ontof-1:1-1 ontoA
6 f1ofo f-1:1-1 ontoAf-1:ontoA
7 forn f-1:ontoAranf-1=A
8 6 7 syl f-1:1-1 ontoAranf-1=A
9 f1of f-1:1-1 ontoAf-1:A
10 0ex V
11 10 fsn2 f-1:Af-1Af-1=f-1
12 11 simprbi f-1:Af-1=f-1
13 9 12 syl f-1:1-1 ontoAf-1=f-1
14 13 rneqd f-1:1-1 ontoAranf-1=ranf-1
15 10 rnsnop ranf-1=f-1
16 14 15 eqtrdi f-1:1-1 ontoAranf-1=f-1
17 8 16 eqtr3d f-1:1-1 ontoAA=f-1
18 fvex f-1V
19 sneq x=f-1x=f-1
20 19 eqeq2d x=f-1A=xA=f-1
21 18 20 spcev A=f-1xA=x
22 5 17 21 3syl f:A1-1 ontoxA=x
23 22 exlimiv ff:A1-1 ontoxA=x
24 4 23 sylbi A1𝑜xA=x
25 vex xV
26 25 ensn1 x1𝑜
27 breq1 A=xA1𝑜x1𝑜
28 26 27 mpbiri A=xA1𝑜
29 28 exlimiv xA=xA1𝑜
30 24 29 impbii A1𝑜xA=x