| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
toponss |
|
| 3 |
2
|
ad2ant2rl |
|
| 4 |
|
simprl |
|
| 5 |
|
sseq0 |
|
| 6 |
3 4 5
|
syl2anc |
|
| 7 |
|
velsn |
|
| 8 |
6 7
|
sylibr |
|
| 9 |
8
|
expr |
|
| 10 |
9
|
ssrdv |
|
| 11 |
|
topontop |
|
| 12 |
|
0opn |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
14
|
snssd |
|
| 16 |
10 15
|
eqssd |
|
| 17 |
|
0ex |
|
| 18 |
17
|
ensn1 |
|
| 19 |
16 18
|
eqbrtrdi |
|
| 20 |
19
|
olcd |
|
| 21 |
|
sdom2en01 |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
|
sdomnen |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
ex |
|
| 26 |
25
|
necon2ad |
|
| 27 |
1 26
|
mpd |
|
| 28 |
27
|
necomd |
|
| 29 |
13
|
adantr |
|
| 30 |
|
toponmax |
|
| 31 |
30
|
adantr |
|
| 32 |
|
en2eqpr |
|
| 33 |
1 29 31 32
|
syl3anc |
|
| 34 |
28 33
|
mpd |
|
| 35 |
34 27
|
jca |
|
| 36 |
|
simprl |
|
| 37 |
|
simprr |
|
| 38 |
37
|
necomd |
|
| 39 |
|
enpr2 |
|
| 40 |
17 30 38 39
|
mp3an2ani |
|
| 41 |
36 40
|
eqbrtrd |
|
| 42 |
35 41
|
impbida |
|