Metamath Proof Explorer


Theorem eqfnun

Description: Two functions on A u. B are equal if and only if they have equal restrictions to both A and B . (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Assertion eqfnun FFnABGFnABF=GFA=GAFB=GB

Proof

Step Hyp Ref Expression
1 reseq1 F=GFA=GA
2 reseq1 F=GFB=GB
3 1 2 jca F=GFA=GAFB=GB
4 elun xABxAxB
5 fveq1 FA=GAFAx=GAx
6 fvres xAFAx=Fx
7 5 6 sylan9req FA=GAxAGAx=Fx
8 fvres xAGAx=Gx
9 8 adantl FA=GAxAGAx=Gx
10 7 9 eqtr3d FA=GAxAFx=Gx
11 10 adantlr FA=GAFB=GBxAFx=Gx
12 fveq1 FB=GBFBx=GBx
13 fvres xBFBx=Fx
14 12 13 sylan9req FB=GBxBGBx=Fx
15 fvres xBGBx=Gx
16 15 adantl FB=GBxBGBx=Gx
17 14 16 eqtr3d FB=GBxBFx=Gx
18 17 adantll FA=GAFB=GBxBFx=Gx
19 11 18 jaodan FA=GAFB=GBxAxBFx=Gx
20 4 19 sylan2b FA=GAFB=GBxABFx=Gx
21 20 ralrimiva FA=GAFB=GBxABFx=Gx
22 eqfnfv FFnABGFnABF=GxABFx=Gx
23 21 22 imbitrrid FFnABGFnABFA=GAFB=GBF=G
24 3 23 impbid2 FFnABGFnABF=GFA=GAFB=GB