Metamath Proof Explorer


Theorem eqfunresadj

Description: Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021)

Ref Expression
Assertion eqfunresadj FunFFunGFX=GXYdomFYdomGFY=GYFXY=GXY

Proof

Step Hyp Ref Expression
1 relres RelFXY
2 relres RelGXY
3 breq FX=GXxFXyxGXy
4 3 3ad2ant2 FunFFunGFX=GXYdomFYdomGFY=GYxFXyxGXy
5 velsn xYx=Y
6 simp33 FunFFunGFX=GXYdomFYdomGFY=GYFY=GY
7 6 eqeq1d FunFFunGFX=GXYdomFYdomGFY=GYFY=yGY=y
8 simp1l FunFFunGFX=GXYdomFYdomGFY=GYFunF
9 simp31 FunFFunGFX=GXYdomFYdomGFY=GYYdomF
10 funbrfvb FunFYdomFFY=yYFy
11 8 9 10 syl2anc FunFFunGFX=GXYdomFYdomGFY=GYFY=yYFy
12 simp1r FunFFunGFX=GXYdomFYdomGFY=GYFunG
13 simp32 FunFFunGFX=GXYdomFYdomGFY=GYYdomG
14 funbrfvb FunGYdomGGY=yYGy
15 12 13 14 syl2anc FunFFunGFX=GXYdomFYdomGFY=GYGY=yYGy
16 7 11 15 3bitr3d FunFFunGFX=GXYdomFYdomGFY=GYYFyYGy
17 breq1 x=YxFyYFy
18 breq1 x=YxGyYGy
19 17 18 bibi12d x=YxFyxGyYFyYGy
20 16 19 syl5ibrcom FunFFunGFX=GXYdomFYdomGFY=GYx=YxFyxGy
21 5 20 biimtrid FunFFunGFX=GXYdomFYdomGFY=GYxYxFyxGy
22 21 pm5.32d FunFFunGFX=GXYdomFYdomGFY=GYxYxFyxYxGy
23 vex yV
24 23 brresi xFYyxYxFy
25 23 brresi xGYyxYxGy
26 22 24 25 3bitr4g FunFFunGFX=GXYdomFYdomGFY=GYxFYyxGYy
27 4 26 orbi12d FunFFunGFX=GXYdomFYdomGFY=GYxFXyxFYyxGXyxGYy
28 resundi FXY=FXFY
29 28 breqi xFXYyxFXFYy
30 brun xFXFYyxFXyxFYy
31 29 30 bitri xFXYyxFXyxFYy
32 resundi GXY=GXGY
33 32 breqi xGXYyxGXGYy
34 brun xGXGYyxGXyxGYy
35 33 34 bitri xGXYyxGXyxGYy
36 27 31 35 3bitr4g FunFFunGFX=GXYdomFYdomGFY=GYxFXYyxGXYy
37 1 2 36 eqbrrdiv FunFFunGFX=GXYdomFYdomGFY=GYFXY=GXY