Description: Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqfunresadj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres | |
|
2 | relres | |
|
3 | breq | |
|
4 | 3 | 3ad2ant2 | |
5 | velsn | |
|
6 | simp33 | |
|
7 | 6 | eqeq1d | |
8 | simp1l | |
|
9 | simp31 | |
|
10 | funbrfvb | |
|
11 | 8 9 10 | syl2anc | |
12 | simp1r | |
|
13 | simp32 | |
|
14 | funbrfvb | |
|
15 | 12 13 14 | syl2anc | |
16 | 7 11 15 | 3bitr3d | |
17 | breq1 | |
|
18 | breq1 | |
|
19 | 17 18 | bibi12d | |
20 | 16 19 | syl5ibrcom | |
21 | 5 20 | biimtrid | |
22 | 21 | pm5.32d | |
23 | vex | |
|
24 | 23 | brresi | |
25 | 23 | brresi | |
26 | 22 24 25 | 3bitr4g | |
27 | 4 26 | orbi12d | |
28 | resundi | |
|
29 | 28 | breqi | |
30 | brun | |
|
31 | 29 30 | bitri | |
32 | resundi | |
|
33 | 32 | breqi | |
34 | brun | |
|
35 | 33 34 | bitri | |
36 | 27 31 35 | 3bitr4g | |
37 | 1 2 36 | eqbrrdiv | |