Metamath Proof Explorer


Theorem eqgabl

Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses eqgabl.x X = Base G
eqgabl.n - ˙ = - G
eqgabl.r ˙ = G ~ QG S
Assertion eqgabl G Abel S X A ˙ B A X B X B - ˙ A S

Proof

Step Hyp Ref Expression
1 eqgabl.x X = Base G
2 eqgabl.n - ˙ = - G
3 eqgabl.r ˙ = G ~ QG S
4 eqid inv g G = inv g G
5 eqid + G = + G
6 1 4 5 3 eqgval G Abel S X A ˙ B A X B X inv g G A + G B S
7 simpll G Abel S X A X B X G Abel
8 ablgrp G Abel G Grp
9 8 ad2antrr G Abel S X A X B X G Grp
10 simprl G Abel S X A X B X A X
11 1 4 grpinvcl G Grp A X inv g G A X
12 9 10 11 syl2anc G Abel S X A X B X inv g G A X
13 simprr G Abel S X A X B X B X
14 1 5 ablcom G Abel inv g G A X B X inv g G A + G B = B + G inv g G A
15 7 12 13 14 syl3anc G Abel S X A X B X inv g G A + G B = B + G inv g G A
16 1 5 4 2 grpsubval B X A X B - ˙ A = B + G inv g G A
17 13 10 16 syl2anc G Abel S X A X B X B - ˙ A = B + G inv g G A
18 15 17 eqtr4d G Abel S X A X B X inv g G A + G B = B - ˙ A
19 18 eleq1d G Abel S X A X B X inv g G A + G B S B - ˙ A S
20 19 pm5.32da G Abel S X A X B X inv g G A + G B S A X B X B - ˙ A S
21 df-3an A X B X inv g G A + G B S A X B X inv g G A + G B S
22 df-3an A X B X B - ˙ A S A X B X B - ˙ A S
23 20 21 22 3bitr4g G Abel S X A X B X inv g G A + G B S A X B X B - ˙ A S
24 6 23 bitrd G Abel S X A ˙ B A X B X B - ˙ A S