Metamath Proof Explorer


Theorem eqgen

Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses eqger.x X=BaseG
eqger.r ˙=G~QGY
Assertion eqgen YSubGrpGAX/˙YA

Proof

Step Hyp Ref Expression
1 eqger.x X=BaseG
2 eqger.r ˙=G~QGY
3 eqid X/˙=X/˙
4 breq2 x˙=AYx˙YA
5 simpl YSubGrpGxXYSubGrpG
6 subgrcl YSubGrpGGGrp
7 1 subgss YSubGrpGYX
8 6 7 jca YSubGrpGGGrpYX
9 eqid +G=+G
10 1 2 9 eqglact GGrpYXxXx˙=zXx+GzY
11 10 3expa GGrpYXxXx˙=zXx+GzY
12 8 11 sylan YSubGrpGxXx˙=zXx+GzY
13 2 ovexi ˙V
14 ecexg ˙Vx˙V
15 13 14 ax-mp x˙V
16 12 15 eqeltrrdi YSubGrpGxXzXx+GzYV
17 eqid yXzXy+Gz=yXzXy+Gz
18 17 1 9 grplactf1o GGrpxXyXzXy+Gzx:X1-1 ontoX
19 17 1 grplactfval xXyXzXy+Gzx=zXx+Gz
20 19 adantl GGrpxXyXzXy+Gzx=zXx+Gz
21 20 f1oeq1d GGrpxXyXzXy+Gzx:X1-1 ontoXzXx+Gz:X1-1 ontoX
22 18 21 mpbid GGrpxXzXx+Gz:X1-1 ontoX
23 6 22 sylan YSubGrpGxXzXx+Gz:X1-1 ontoX
24 f1of1 zXx+Gz:X1-1 ontoXzXx+Gz:X1-1X
25 23 24 syl YSubGrpGxXzXx+Gz:X1-1X
26 7 adantr YSubGrpGxXYX
27 f1ores zXx+Gz:X1-1XYXzXx+GzY:Y1-1 ontozXx+GzY
28 25 26 27 syl2anc YSubGrpGxXzXx+GzY:Y1-1 ontozXx+GzY
29 f1oen2g YSubGrpGzXx+GzYVzXx+GzY:Y1-1 ontozXx+GzYYzXx+GzY
30 5 16 28 29 syl3anc YSubGrpGxXYzXx+GzY
31 30 12 breqtrrd YSubGrpGxXYx˙
32 3 4 31 ectocld YSubGrpGAX/˙YA