Metamath Proof Explorer


Theorem eqglact

Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses eqger.x X=BaseG
eqger.r ˙=G~QGY
eqglact.3 +˙=+G
Assertion eqglact GGrpYXAXA˙=xXA+˙xY

Proof

Step Hyp Ref Expression
1 eqger.x X=BaseG
2 eqger.r ˙=G~QGY
3 eqglact.3 +˙=+G
4 eqid invgG=invgG
5 1 4 3 2 eqgval GGrpYXA˙xAXxXinvgGA+˙xY
6 3anass AXxXinvgGA+˙xYAXxXinvgGA+˙xY
7 5 6 bitrdi GGrpYXA˙xAXxXinvgGA+˙xY
8 7 baibd GGrpYXAXA˙xxXinvgGA+˙xY
9 8 3impa GGrpYXAXA˙xxXinvgGA+˙xY
10 9 abbidv GGrpYXAXx|A˙x=x|xXinvgGA+˙xY
11 dfec2 AXA˙=x|A˙x
12 11 3ad2ant3 GGrpYXAXA˙=x|A˙x
13 eqid gXxXg+˙x=gXxXg+˙x
14 13 1 3 4 grplactcnv GGrpAXgXxXg+˙xA:X1-1 ontoXgXxXg+˙xA-1=gXxXg+˙xinvgGA
15 14 simprd GGrpAXgXxXg+˙xA-1=gXxXg+˙xinvgGA
16 13 1 grplactfval AXgXxXg+˙xA=xXA+˙x
17 16 adantl GGrpAXgXxXg+˙xA=xXA+˙x
18 17 cnveqd GGrpAXgXxXg+˙xA-1=xXA+˙x-1
19 1 4 grpinvcl GGrpAXinvgGAX
20 13 1 grplactfval invgGAXgXxXg+˙xinvgGA=xXinvgGA+˙x
21 19 20 syl GGrpAXgXxXg+˙xinvgGA=xXinvgGA+˙x
22 15 18 21 3eqtr3d GGrpAXxXA+˙x-1=xXinvgGA+˙x
23 22 cnveqd GGrpAXxXA+˙x-1-1=xXinvgGA+˙x-1
24 23 3adant2 GGrpYXAXxXA+˙x-1-1=xXinvgGA+˙x-1
25 24 imaeq1d GGrpYXAXxXA+˙x-1-1Y=xXinvgGA+˙x-1Y
26 imacnvcnv xXA+˙x-1-1Y=xXA+˙xY
27 eqid xXinvgGA+˙x=xXinvgGA+˙x
28 27 mptpreima xXinvgGA+˙x-1Y=xX|invgGA+˙xY
29 df-rab xX|invgGA+˙xY=x|xXinvgGA+˙xY
30 28 29 eqtri xXinvgGA+˙x-1Y=x|xXinvgGA+˙xY
31 25 26 30 3eqtr3g GGrpYXAXxXA+˙xY=x|xXinvgGA+˙xY
32 10 12 31 3eqtr4d GGrpYXAXA˙=xXA+˙xY