Metamath Proof Explorer


Theorem eqgval

Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015) (Revised by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses eqgval.x X=BaseG
eqgval.n N=invgG
eqgval.p +˙=+G
eqgval.r R=G~QGS
Assertion eqgval GVSXARBAXBXNA+˙BS

Proof

Step Hyp Ref Expression
1 eqgval.x X=BaseG
2 eqgval.n N=invgG
3 eqgval.p +˙=+G
4 eqgval.r R=G~QGS
5 1 2 3 4 eqgfval GVSXR=xy|xyXNx+˙yS
6 5 breqd GVSXARBAxy|xyXNx+˙ySB
7 brabv Axy|xyXNx+˙ySBAVBV
8 7 adantl GVSXAxy|xyXNx+˙ySBAVBV
9 simpr1 GVSXAXBXNA+˙BSAX
10 9 elexd GVSXAXBXNA+˙BSAV
11 simpr2 GVSXAXBXNA+˙BSBX
12 11 elexd GVSXAXBXNA+˙BSBV
13 10 12 jca GVSXAXBXNA+˙BSAVBV
14 vex xV
15 vex yV
16 14 15 prss xXyXxyX
17 eleq1 x=AxXAX
18 eleq1 y=ByXBX
19 17 18 bi2anan9 x=Ay=BxXyXAXBX
20 16 19 bitr3id x=Ay=BxyXAXBX
21 fveq2 x=ANx=NA
22 id y=By=B
23 21 22 oveqan12d x=Ay=BNx+˙y=NA+˙B
24 23 eleq1d x=Ay=BNx+˙ySNA+˙BS
25 20 24 anbi12d x=Ay=BxyXNx+˙ySAXBXNA+˙BS
26 df-3an AXBXNA+˙BSAXBXNA+˙BS
27 25 26 bitr4di x=Ay=BxyXNx+˙ySAXBXNA+˙BS
28 eqid xy|xyXNx+˙yS=xy|xyXNx+˙yS
29 27 28 brabga AVBVAxy|xyXNx+˙ySBAXBXNA+˙BS
30 8 13 29 pm5.21nd GVSXAxy|xyXNx+˙ySBAXBXNA+˙BS
31 6 30 bitrd GVSXARBAXBXNA+˙BS