Description: If two classes are equivalent regarding .~ , then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018) (Revised by AV, 29-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | erclwwlk.r | |
|
Assertion | erclwwlkeqlen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlk.r | |
|
2 | 1 | erclwwlkeq | |
3 | fveq2 | |
|
4 | eqid | |
|
5 | 4 | clwwlkbp | |
6 | 5 | simp2d | |
7 | 6 | ad2antlr | |
8 | elfzelz | |
|
9 | cshwlen | |
|
10 | 7 8 9 | syl2an | |
11 | 3 10 | sylan9eqr | |
12 | 11 | rexlimdva2 | |
13 | 12 | ex | |
14 | 13 | com23 | |
15 | 14 | 3impia | |
16 | 15 | com12 | |
17 | 2 16 | sylbid | |