Metamath Proof Explorer


Theorem erclwwlkeqlen

Description: If two classes are equivalent regarding .~ , then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018) (Revised by AV, 29-Apr-2021)

Ref Expression
Hypothesis erclwwlk.r ˙=uw|uClWWalksGwClWWalksGn0wu=wcyclShiftn
Assertion erclwwlkeqlen UXWYU˙WU=W

Proof

Step Hyp Ref Expression
1 erclwwlk.r ˙=uw|uClWWalksGwClWWalksGn0wu=wcyclShiftn
2 1 erclwwlkeq UXWYU˙WUClWWalksGWClWWalksGn0WU=WcyclShiftn
3 fveq2 U=WcyclShiftnU=WcyclShiftn
4 eqid VtxG=VtxG
5 4 clwwlkbp WClWWalksGGVWWordVtxGW
6 5 simp2d WClWWalksGWWordVtxG
7 6 ad2antlr UClWWalksGWClWWalksGUXWYWWordVtxG
8 elfzelz n0Wn
9 cshwlen WWordVtxGnWcyclShiftn=W
10 7 8 9 syl2an UClWWalksGWClWWalksGUXWYn0WWcyclShiftn=W
11 3 10 sylan9eqr UClWWalksGWClWWalksGUXWYn0WU=WcyclShiftnU=W
12 11 rexlimdva2 UClWWalksGWClWWalksGUXWYn0WU=WcyclShiftnU=W
13 12 ex UClWWalksGWClWWalksGUXWYn0WU=WcyclShiftnU=W
14 13 com23 UClWWalksGWClWWalksGn0WU=WcyclShiftnUXWYU=W
15 14 3impia UClWWalksGWClWWalksGn0WU=WcyclShiftnUXWYU=W
16 15 com12 UXWYUClWWalksGWClWWalksGn0WU=WcyclShiftnU=W
17 2 16 sylbid UXWYU˙WU=W