Metamath Proof Explorer


Theorem erng1lem

Description: Value of the endomorphism division ring unity. (Contributed by NM, 12-Oct-2013)

Ref Expression
Hypotheses erng1.h H=LHypK
erng1.t T=LTrnKW
erng1.e E=TEndoKW
erng1.d D=EDRingKW
erng1.r KHLWHDRing
Assertion erng1lem KHLWH1D=IT

Proof

Step Hyp Ref Expression
1 erng1.h H=LHypK
2 erng1.t T=LTrnKW
3 erng1.e E=TEndoKW
4 erng1.d D=EDRingKW
5 erng1.r KHLWHDRing
6 1 2 3 tendoidcl KHLWHITE
7 eqid BaseD=BaseD
8 1 2 3 4 7 erngbase KHLWHBaseD=E
9 6 8 eleqtrrd KHLWHITBaseD
10 8 eleq2d KHLWHuBaseDuE
11 simpl KHLWHuEKHLWH
12 6 adantr KHLWHuEITE
13 simpr KHLWHuEuE
14 eqid D=D
15 1 2 3 4 14 erngmul KHLWHITEuEITDu=ITu
16 11 12 13 15 syl12anc KHLWHuEITDu=ITu
17 1 2 3 tendo1mul KHLWHuEITu=u
18 16 17 eqtrd KHLWHuEITDu=u
19 1 2 3 4 14 erngmul KHLWHuEITEuDIT=uIT
20 11 13 12 19 syl12anc KHLWHuEuDIT=uIT
21 1 2 3 tendo1mulr KHLWHuEuIT=u
22 20 21 eqtrd KHLWHuEuDIT=u
23 18 22 jca KHLWHuEITDu=uuDIT=u
24 23 ex KHLWHuEITDu=uuDIT=u
25 10 24 sylbid KHLWHuBaseDITDu=uuDIT=u
26 25 ralrimiv KHLWHuBaseDITDu=uuDIT=u
27 eqid 1D=1D
28 7 14 27 isringid DRingITBaseDuBaseDITDu=uuDIT=u1D=IT
29 5 28 syl KHLWHITBaseDuBaseDITDu=uuDIT=u1D=IT
30 9 26 29 mpbi2and KHLWH1D=IT