Description: Value of the endomorphism division ring unity. (Contributed by NM, 12-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erng1.h | |
|
erng1.t | |
||
erng1.e | |
||
erng1.d | |
||
erng1.r | |
||
Assertion | erng1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erng1.h | |
|
2 | erng1.t | |
|
3 | erng1.e | |
|
4 | erng1.d | |
|
5 | erng1.r | |
|
6 | 1 2 3 | tendoidcl | |
7 | eqid | |
|
8 | 1 2 3 4 7 | erngbase | |
9 | 6 8 | eleqtrrd | |
10 | 8 | eleq2d | |
11 | simpl | |
|
12 | 6 | adantr | |
13 | simpr | |
|
14 | eqid | |
|
15 | 1 2 3 4 14 | erngmul | |
16 | 11 12 13 15 | syl12anc | |
17 | 1 2 3 | tendo1mul | |
18 | 16 17 | eqtrd | |
19 | 1 2 3 4 14 | erngmul | |
20 | 11 13 12 19 | syl12anc | |
21 | 1 2 3 | tendo1mulr | |
22 | 20 21 | eqtrd | |
23 | 18 22 | jca | |
24 | 23 | ex | |
25 | 10 24 | sylbid | |
26 | 25 | ralrimiv | |
27 | eqid | |
|
28 | 7 14 27 | isringid | |
29 | 5 28 | syl | |
30 | 9 26 29 | mpbi2and | |