Metamath Proof Explorer


Theorem erngdvlem1

Description: Lemma for eringring . (Contributed by NM, 4-Aug-2013)

Ref Expression
Hypotheses ernggrp.h H=LHypK
ernggrp.d D=EDRingKW
erngdv.b B=BaseK
erngdv.t T=LTrnKW
erngdv.e E=TEndoKW
erngdv.p P=aE,bEfTafbf
erngdv.o 0˙=fTIB
erngdv.i I=aEfTaf-1
Assertion erngdvlem1 KHLWHDGrp

Proof

Step Hyp Ref Expression
1 ernggrp.h H=LHypK
2 ernggrp.d D=EDRingKW
3 erngdv.b B=BaseK
4 erngdv.t T=LTrnKW
5 erngdv.e E=TEndoKW
6 erngdv.p P=aE,bEfTafbf
7 erngdv.o 0˙=fTIB
8 erngdv.i I=aEfTaf-1
9 eqid BaseD=BaseD
10 1 4 5 2 9 erngbase KHLWHBaseD=E
11 10 eqcomd KHLWHE=BaseD
12 eqid +D=+D
13 1 4 5 2 12 erngfplus KHLWH+D=aE,bEfTafbf
14 6 13 eqtr4id KHLWHP=+D
15 1 4 5 6 tendoplcl KHLWHsEtEsPtE
16 1 4 5 6 tendoplass KHLWHsEtEuEsPtPu=sPtPu
17 3 1 4 5 7 tendo0cl KHLWH0˙E
18 3 1 4 5 7 6 tendo0pl KHLWHsE0˙Ps=s
19 1 4 5 8 tendoicl KHLWHsEIsE
20 1 4 5 8 3 6 7 tendoipl KHLWHsEIsPs=0˙
21 11 14 15 16 17 18 19 20 isgrpd KHLWHDGrp