Metamath Proof Explorer


Theorem tendoplass

Description: The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendopl.h H = LHyp K
tendopl.t T = LTrn K W
tendopl.e E = TEndo K W
tendopl.p P = s E , t E f T s f t f
Assertion tendoplass K HL W H S E U E V E S P U P V = S P U P V

Proof

Step Hyp Ref Expression
1 tendopl.h H = LHyp K
2 tendopl.t T = LTrn K W
3 tendopl.e E = TEndo K W
4 tendopl.p P = s E , t E f T s f t f
5 simpl K HL W H S E U E V E K HL W H
6 simpr1 K HL W H S E U E V E S E
7 simpr2 K HL W H S E U E V E U E
8 1 2 3 4 tendoplcl K HL W H S E U E S P U E
9 5 6 7 8 syl3anc K HL W H S E U E V E S P U E
10 simpr3 K HL W H S E U E V E V E
11 1 2 3 4 tendoplcl K HL W H S P U E V E S P U P V E
12 5 9 10 11 syl3anc K HL W H S E U E V E S P U P V E
13 1 2 3 4 tendoplcl K HL W H U E V E U P V E
14 5 7 10 13 syl3anc K HL W H S E U E V E U P V E
15 1 2 3 4 tendoplcl K HL W H S E U P V E S P U P V E
16 5 6 14 15 syl3anc K HL W H S E U E V E S P U P V E
17 coass S g U g V g = S g U g V g
18 simplr1 K HL W H S E U E V E g T S E
19 simplr2 K HL W H S E U E V E g T U E
20 simpr K HL W H S E U E V E g T g T
21 4 2 tendopl2 S E U E g T S P U g = S g U g
22 18 19 20 21 syl3anc K HL W H S E U E V E g T S P U g = S g U g
23 22 coeq1d K HL W H S E U E V E g T S P U g V g = S g U g V g
24 simplr3 K HL W H S E U E V E g T V E
25 4 2 tendopl2 U E V E g T U P V g = U g V g
26 19 24 20 25 syl3anc K HL W H S E U E V E g T U P V g = U g V g
27 26 coeq2d K HL W H S E U E V E g T S g U P V g = S g U g V g
28 17 23 27 3eqtr4a K HL W H S E U E V E g T S P U g V g = S g U P V g
29 9 adantr K HL W H S E U E V E g T S P U E
30 4 2 tendopl2 S P U E V E g T S P U P V g = S P U g V g
31 29 24 20 30 syl3anc K HL W H S E U E V E g T S P U P V g = S P U g V g
32 14 adantr K HL W H S E U E V E g T U P V E
33 4 2 tendopl2 S E U P V E g T S P U P V g = S g U P V g
34 18 32 20 33 syl3anc K HL W H S E U E V E g T S P U P V g = S g U P V g
35 28 31 34 3eqtr4d K HL W H S E U E V E g T S P U P V g = S P U P V g
36 35 ralrimiva K HL W H S E U E V E g T S P U P V g = S P U P V g
37 1 2 3 tendoeq1 K HL W H S P U P V E S P U P V E g T S P U P V g = S P U P V g S P U P V = S P U P V
38 5 12 16 36 37 syl121anc K HL W H S E U E V E S P U P V = S P U P V