Metamath Proof Explorer


Theorem esplylem

Description: Lemma for esplyfv and others. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplympl.d D = h 0 I | finSupp 0 h
esplympl.i φ I Fin
esplympl.r φ R Ring
esplympl.k φ K 0
Assertion esplylem φ 𝟙 I c 𝒫 I | c = K D

Proof

Step Hyp Ref Expression
1 esplympl.d D = h 0 I | finSupp 0 h
2 esplympl.i φ I Fin
3 esplympl.r φ R Ring
4 esplympl.k φ K 0
5 nfv d φ
6 indf1o I Fin 𝟙 I : 𝒫 I 1-1 onto 0 1 I
7 f1of 𝟙 I : 𝒫 I 1-1 onto 0 1 I 𝟙 I : 𝒫 I 0 1 I
8 2 6 7 3syl φ 𝟙 I : 𝒫 I 0 1 I
9 8 ffund φ Fun 𝟙 I
10 breq1 h = 𝟙 I d finSupp 0 h finSupp 0 𝟙 I d
11 nn0ex 0 V
12 11 a1i φ d c 𝒫 I | c = K 0 V
13 2 adantr φ d c 𝒫 I | c = K I Fin
14 ssrab2 c 𝒫 I | c = K 𝒫 I
15 14 a1i φ c 𝒫 I | c = K 𝒫 I
16 15 sselda φ d c 𝒫 I | c = K d 𝒫 I
17 16 elpwid φ d c 𝒫 I | c = K d I
18 indf I Fin d I 𝟙 I d : I 0 1
19 13 17 18 syl2anc φ d c 𝒫 I | c = K 𝟙 I d : I 0 1
20 0nn0 0 0
21 20 a1i φ d c 𝒫 I | c = K 0 0
22 1nn0 1 0
23 22 a1i φ d c 𝒫 I | c = K 1 0
24 21 23 prssd φ d c 𝒫 I | c = K 0 1 0
25 19 24 fssd φ d c 𝒫 I | c = K 𝟙 I d : I 0
26 12 13 25 elmapdd φ d c 𝒫 I | c = K 𝟙 I d 0 I
27 19 13 21 fidmfisupp φ d c 𝒫 I | c = K finSupp 0 𝟙 I d
28 10 26 27 elrabd φ d c 𝒫 I | c = K 𝟙 I d h 0 I | finSupp 0 h
29 28 1 eleqtrrdi φ d c 𝒫 I | c = K 𝟙 I d D
30 5 9 29 funimassd φ 𝟙 I c 𝒫 I | c = K D