Metamath Proof Explorer


Theorem etransclem1

Description: H is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem1.x φX
etransclem1.p φP
etransclem1.h H=j0MxXxjifj=0P1P
etransclem1.j φJ0M
Assertion etransclem1 φHJ:X

Proof

Step Hyp Ref Expression
1 etransclem1.x φX
2 etransclem1.p φP
3 etransclem1.h H=j0MxXxjifj=0P1P
4 etransclem1.j φJ0M
5 1 sselda φxXx
6 4 elfzelzd φJ
7 6 zcnd φJ
8 7 adantr φxXJ
9 5 8 subcld φxXxJ
10 nnm1nn0 PP10
11 2 10 syl φP10
12 2 nnnn0d φP0
13 11 12 ifcld φifJ=0P1P0
14 13 adantr φxXifJ=0P1P0
15 9 14 expcld φxXxJifJ=0P1P
16 eqid xXxJifJ=0P1P=xXxJifJ=0P1P
17 15 16 fmptd φxXxJifJ=0P1P:X
18 oveq2 j=nxj=xn
19 eqeq1 j=nj=0n=0
20 19 ifbid j=nifj=0P1P=ifn=0P1P
21 18 20 oveq12d j=nxjifj=0P1P=xnifn=0P1P
22 21 mpteq2dv j=nxXxjifj=0P1P=xXxnifn=0P1P
23 22 cbvmptv j0MxXxjifj=0P1P=n0MxXxnifn=0P1P
24 3 23 eqtri H=n0MxXxnifn=0P1P
25 oveq2 n=Jxn=xJ
26 eqeq1 n=Jn=0J=0
27 26 ifbid n=Jifn=0P1P=ifJ=0P1P
28 25 27 oveq12d n=Jxnifn=0P1P=xJifJ=0P1P
29 28 mpteq2dv n=JxXxnifn=0P1P=xXxJifJ=0P1P
30 cnex V
31 30 ssex XXV
32 mptexg XVxXxJifJ=0P1PV
33 1 31 32 3syl φxXxJifJ=0P1PV
34 24 29 4 33 fvmptd3 φHJ=xXxJifJ=0P1P
35 34 feq1d φHJ:XxXxJifJ=0P1P:X
36 17 35 mpbird φHJ:X