Metamath Proof Explorer


Theorem etransclem36

Description: The N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem36.s φS
etransclem36.x φXTopOpenfld𝑡S
etransclem36.p φP
etransclem36.m φM0
etransclem36.f F=xXxP1j=1MxjP
etransclem36.n φN0
etransclem36.h H=j0MxXxjifj=0P1P
etransclem36.jx φJX
etransclem36.jz φJ
etransclem36.10 C=n0c0n0M|j=0Mcj=n
Assertion etransclem36 φSDnFNJ

Proof

Step Hyp Ref Expression
1 etransclem36.s φS
2 etransclem36.x φXTopOpenfld𝑡S
3 etransclem36.p φP
4 etransclem36.m φM0
5 etransclem36.f F=xXxP1j=1MxjP
6 etransclem36.n φN0
7 etransclem36.h H=j0MxXxjifj=0P1P
8 etransclem36.jx φJX
9 etransclem36.jz φJ
10 etransclem36.10 C=n0c0n0M|j=0Mcj=n
11 1 2 3 4 5 6 7 10 8 etransclem31 φSDnFNJ=cCNN!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
12 10 6 etransclem16 φCNFin
13 3 adantr φcCNP
14 4 adantr φcCNM0
15 6 adantr φcCNN0
16 9 adantr φcCNJ
17 etransclem11 n0c0n0M|j=0Mcj=n=m0d0m0M|k=0Mdk=m
18 etransclem11 m0d0m0M|k=0Mdk=m=n0e0n0M|j=0Mej=n
19 10 17 18 3eqtri C=n0e0n0M|j=0Mej=n
20 simpr φcCNcCN
21 13 14 15 16 19 20 etransclem26 φcCNN!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
22 12 21 fsumzcl φcCNN!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
23 11 22 eqeltrd φSDnFNJ