Metamath Proof Explorer


Theorem etransclem26

Description: Every term in the sum of the N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem26.p φ P
etransclem26.m φ M 0
etransclem26.n φ N 0
etransclem26.jz φ J
etransclem26.c C = n 0 c 0 n 0 M | j = 0 M c j = n
etransclem26.d φ D C N
Assertion etransclem26 φ N ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! J P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! J j P D j

Proof

Step Hyp Ref Expression
1 etransclem26.p φ P
2 etransclem26.m φ M 0
3 etransclem26.n φ N 0
4 etransclem26.jz φ J
5 etransclem26.c C = n 0 c 0 n 0 M | j = 0 M c j = n
6 etransclem26.d φ D C N
7 5 3 etransclem12 φ C N = c 0 N 0 M | j = 0 M c j = N
8 6 7 eleqtrd φ D c 0 N 0 M | j = 0 M c j = N
9 fveq1 c = D c j = D j
10 9 sumeq2sdv c = D j = 0 M c j = j = 0 M D j
11 10 eqeq1d c = D j = 0 M c j = N j = 0 M D j = N
12 11 elrab D c 0 N 0 M | j = 0 M c j = N D 0 N 0 M j = 0 M D j = N
13 8 12 sylib φ D 0 N 0 M j = 0 M D j = N
14 13 simprd φ j = 0 M D j = N
15 14 eqcomd φ N = j = 0 M D j
16 15 fveq2d φ N ! = j = 0 M D j !
17 16 oveq1d φ N ! j = 0 M D j ! = j = 0 M D j ! j = 0 M D j !
18 nfcv _ j D
19 fzfid φ 0 M Fin
20 nn0ex 0 V
21 fzssnn0 0 N 0
22 mapss 0 V 0 N 0 0 N 0 M 0 0 M
23 20 21 22 mp2an 0 N 0 M 0 0 M
24 13 simpld φ D 0 N 0 M
25 23 24 sseldi φ D 0 0 M
26 18 19 25 mccl φ j = 0 M D j ! j = 0 M D j !
27 17 26 eqeltrd φ N ! j = 0 M D j !
28 27 nnzd φ N ! j = 0 M D j !
29 elmapi D 0 N 0 M D : 0 M 0 N
30 24 29 syl φ D : 0 M 0 N
31 1 2 30 4 etransclem10 φ if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! J P - 1 - D 0
32 fzfid φ 1 M Fin
33 1 adantr φ j 1 M P
34 30 adantr φ j 1 M D : 0 M 0 N
35 0z 0
36 fzp1ss 0 0 + 1 M 0 M
37 35 36 ax-mp 0 + 1 M 0 M
38 1e0p1 1 = 0 + 1
39 38 oveq1i 1 M = 0 + 1 M
40 39 eleq2i j 1 M j 0 + 1 M
41 40 biimpi j 1 M j 0 + 1 M
42 37 41 sseldi j 1 M j 0 M
43 42 adantl φ j 1 M j 0 M
44 4 adantr φ j 1 M J
45 33 34 43 44 etransclem3 φ j 1 M if P < D j 0 P ! P D j ! J j P D j
46 32 45 fprodzcl φ j = 1 M if P < D j 0 P ! P D j ! J j P D j
47 31 46 zmulcld φ if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! J P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! J j P D j
48 28 47 zmulcld φ N ! j = 0 M D j ! if P 1 < D 0 0 P 1 ! P - 1 - D 0 ! J P - 1 - D 0 j = 1 M if P < D j 0 P ! P D j ! J j P D j