Metamath Proof Explorer


Theorem etransclem27

Description: The N -th derivative of F applied to J is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem27.s φ S
etransclem27.x φ X TopOpen fld 𝑡 S
etransclem27.p φ P
etransclem27.h H = j 0 M x X x j if j = 0 P 1 P
etransclem27.cfi φ C Fin
etransclem27.cf φ C : dom C 0 0 M
etransclem27.g G = x X l dom C j = 0 M S D n H j C l j x
etransclem27.jx φ J X
etransclem27.jz φ J
Assertion etransclem27 φ G J

Proof

Step Hyp Ref Expression
1 etransclem27.s φ S
2 etransclem27.x φ X TopOpen fld 𝑡 S
3 etransclem27.p φ P
4 etransclem27.h H = j 0 M x X x j if j = 0 P 1 P
5 etransclem27.cfi φ C Fin
6 etransclem27.cf φ C : dom C 0 0 M
7 etransclem27.g G = x X l dom C j = 0 M S D n H j C l j x
8 etransclem27.jx φ J X
9 etransclem27.jz φ J
10 fveq2 x = J S D n H j C l j x = S D n H j C l j J
11 10 prodeq2ad x = J j = 0 M S D n H j C l j x = j = 0 M S D n H j C l j J
12 11 sumeq2sdv x = J l dom C j = 0 M S D n H j C l j x = l dom C j = 0 M S D n H j C l j J
13 dmfi C Fin dom C Fin
14 5 13 syl φ dom C Fin
15 fzfid φ l dom C 0 M Fin
16 1 ad2antrr φ l dom C j 0 M S
17 2 ad2antrr φ l dom C j 0 M X TopOpen fld 𝑡 S
18 3 ad2antrr φ l dom C j 0 M P
19 etransclem5 j 0 M x X x j if j = 0 P 1 P = z 0 M y X y z if z = 0 P 1 P
20 4 19 eqtri H = z 0 M y X y z if z = 0 P 1 P
21 simpr φ l dom C j 0 M j 0 M
22 6 ffvelrnda φ l dom C C l 0 0 M
23 elmapi C l 0 0 M C l : 0 M 0
24 22 23 syl φ l dom C C l : 0 M 0
25 24 ffvelrnda φ l dom C j 0 M C l j 0
26 16 17 18 20 21 25 etransclem20 φ l dom C j 0 M S D n H j C l j : X
27 8 ad2antrr φ l dom C j 0 M J X
28 26 27 ffvelrnd φ l dom C j 0 M S D n H j C l j J
29 15 28 fprodcl φ l dom C j = 0 M S D n H j C l j J
30 14 29 fsumcl φ l dom C j = 0 M S D n H j C l j J
31 7 12 8 30 fvmptd3 φ G J = l dom C j = 0 M S D n H j C l j J
32 16 17 18 20 21 25 27 etransclem21 φ l dom C j 0 M S D n H j C l j J = if if j = 0 P 1 P < C l j 0 if j = 0 P 1 P ! if j = 0 P 1 P C l j ! J j if j = 0 P 1 P C l j
33 iftrue if j = 0 P 1 P < C l j if if j = 0 P 1 P < C l j 0 if j = 0 P 1 P ! if j = 0 P 1 P C l j ! J j if j = 0 P 1 P C l j = 0
34 0zd if j = 0 P 1 P < C l j 0
35 33 34 eqeltrd if j = 0 P 1 P < C l j if if j = 0 P 1 P < C l j 0 if j = 0 P 1 P ! if j = 0 P 1 P C l j ! J j if j = 0 P 1 P C l j
36 35 adantl φ l dom C j 0 M if j = 0 P 1 P < C l j if if j = 0 P 1 P < C l j 0 if j = 0 P 1 P ! if j = 0 P 1 P C l j ! J j if j = 0 P 1 P C l j
37 0zd φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j 0
38 nnm1nn0 P P 1 0
39 3 38 syl φ P 1 0
40 3 nnnn0d φ P 0
41 39 40 ifcld φ if j = 0 P 1 P 0
42 41 nn0zd φ if j = 0 P 1 P
43 42 ad3antrrr φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P
44 25 nn0zd φ l dom C j 0 M C l j
45 44 adantr φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j C l j
46 43 45 zsubcld φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P C l j
47 37 43 46 3jca φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j 0 if j = 0 P 1 P if j = 0 P 1 P C l j
48 45 zred φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j C l j
49 43 zred φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P
50 simpr φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j ¬ if j = 0 P 1 P < C l j
51 48 49 50 nltled φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j C l j if j = 0 P 1 P
52 49 48 subge0d φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j 0 if j = 0 P 1 P C l j C l j if j = 0 P 1 P
53 51 52 mpbird φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j 0 if j = 0 P 1 P C l j
54 0red φ l dom C j 0 M 0
55 25 nn0red φ l dom C j 0 M C l j
56 41 nn0red φ if j = 0 P 1 P
57 56 ad2antrr φ l dom C j 0 M if j = 0 P 1 P
58 25 nn0ge0d φ l dom C j 0 M 0 C l j
59 54 55 57 58 lesub2dd φ l dom C j 0 M if j = 0 P 1 P C l j if j = 0 P 1 P 0
60 57 recnd φ l dom C j 0 M if j = 0 P 1 P
61 60 subid1d φ l dom C j 0 M if j = 0 P 1 P 0 = if j = 0 P 1 P
62 59 61 breqtrd φ l dom C j 0 M if j = 0 P 1 P C l j if j = 0 P 1 P
63 62 adantr φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P C l j if j = 0 P 1 P
64 47 53 63 jca32 φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j 0 if j = 0 P 1 P if j = 0 P 1 P C l j 0 if j = 0 P 1 P C l j if j = 0 P 1 P C l j if j = 0 P 1 P
65 elfz2 if j = 0 P 1 P C l j 0 if j = 0 P 1 P 0 if j = 0 P 1 P if j = 0 P 1 P C l j 0 if j = 0 P 1 P C l j if j = 0 P 1 P C l j if j = 0 P 1 P
66 64 65 sylibr φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P C l j 0 if j = 0 P 1 P
67 permnn if j = 0 P 1 P C l j 0 if j = 0 P 1 P if j = 0 P 1 P ! if j = 0 P 1 P C l j !
68 66 67 syl φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P ! if j = 0 P 1 P C l j !
69 68 nnzd φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P ! if j = 0 P 1 P C l j !
70 9 ad3antrrr φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j J
71 elfzelz j 0 M j
72 71 ad2antlr φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j j
73 70 72 zsubcld φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j J j
74 elnn0z if j = 0 P 1 P C l j 0 if j = 0 P 1 P C l j 0 if j = 0 P 1 P C l j
75 46 53 74 sylanbrc φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P C l j 0
76 zexpcl J j if j = 0 P 1 P C l j 0 J j if j = 0 P 1 P C l j
77 73 75 76 syl2anc φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j J j if j = 0 P 1 P C l j
78 69 77 zmulcld φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if j = 0 P 1 P ! if j = 0 P 1 P C l j ! J j if j = 0 P 1 P C l j
79 37 78 ifcld φ l dom C j 0 M ¬ if j = 0 P 1 P < C l j if if j = 0 P 1 P < C l j 0 if j = 0 P 1 P ! if j = 0 P 1 P C l j ! J j if j = 0 P 1 P C l j
80 36 79 pm2.61dan φ l dom C j 0 M if if j = 0 P 1 P < C l j 0 if j = 0 P 1 P ! if j = 0 P 1 P C l j ! J j if j = 0 P 1 P C l j
81 32 80 eqeltrd φ l dom C j 0 M S D n H j C l j J
82 15 81 fprodzcl φ l dom C j = 0 M S D n H j C l j J
83 14 82 fsumzcl φ l dom C j = 0 M S D n H j C l j J
84 31 83 eqeltrd φ G J