| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem27.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | etransclem27.x |  |-  ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | etransclem27.p |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | etransclem27.h |  |-  H = ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 5 |  | etransclem27.cfi |  |-  ( ph -> C e. Fin ) | 
						
							| 6 |  | etransclem27.cf |  |-  ( ph -> C : dom C --> ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 7 |  | etransclem27.g |  |-  G = ( x e. X |-> sum_ l e. dom C prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` x ) ) | 
						
							| 8 |  | etransclem27.jx |  |-  ( ph -> J e. X ) | 
						
							| 9 |  | etransclem27.jz |  |-  ( ph -> J e. ZZ ) | 
						
							| 10 |  | fveq2 |  |-  ( x = J -> ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` x ) = ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) ) | 
						
							| 11 | 10 | prodeq2ad |  |-  ( x = J -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` x ) = prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) ) | 
						
							| 12 | 11 | sumeq2sdv |  |-  ( x = J -> sum_ l e. dom C prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` x ) = sum_ l e. dom C prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) ) | 
						
							| 13 |  | dmfi |  |-  ( C e. Fin -> dom C e. Fin ) | 
						
							| 14 | 5 13 | syl |  |-  ( ph -> dom C e. Fin ) | 
						
							| 15 |  | fzfid |  |-  ( ( ph /\ l e. dom C ) -> ( 0 ... M ) e. Fin ) | 
						
							| 16 | 1 | ad2antrr |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> S e. { RR , CC } ) | 
						
							| 17 | 2 | ad2antrr |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 18 | 3 | ad2antrr |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> P e. NN ) | 
						
							| 19 |  | etransclem5 |  |-  ( j e. ( 0 ... M ) |-> ( x e. X |-> ( ( x - j ) ^ if ( j = 0 , ( P - 1 ) , P ) ) ) ) = ( z e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - z ) ^ if ( z = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 20 | 4 19 | eqtri |  |-  H = ( z e. ( 0 ... M ) |-> ( y e. X |-> ( ( y - z ) ^ if ( z = 0 , ( P - 1 ) , P ) ) ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) | 
						
							| 22 | 6 | ffvelcdmda |  |-  ( ( ph /\ l e. dom C ) -> ( C ` l ) e. ( NN0 ^m ( 0 ... M ) ) ) | 
						
							| 23 |  | elmapi |  |-  ( ( C ` l ) e. ( NN0 ^m ( 0 ... M ) ) -> ( C ` l ) : ( 0 ... M ) --> NN0 ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ph /\ l e. dom C ) -> ( C ` l ) : ( 0 ... M ) --> NN0 ) | 
						
							| 25 | 24 | ffvelcdmda |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( ( C ` l ) ` j ) e. NN0 ) | 
						
							| 26 | 16 17 18 20 21 25 | etransclem20 |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) : X --> CC ) | 
						
							| 27 | 8 | ad2antrr |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> J e. X ) | 
						
							| 28 | 26 27 | ffvelcdmd |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) e. CC ) | 
						
							| 29 | 15 28 | fprodcl |  |-  ( ( ph /\ l e. dom C ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) e. CC ) | 
						
							| 30 | 14 29 | fsumcl |  |-  ( ph -> sum_ l e. dom C prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) e. CC ) | 
						
							| 31 | 7 12 8 30 | fvmptd3 |  |-  ( ph -> ( G ` J ) = sum_ l e. dom C prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) ) | 
						
							| 32 | 16 17 18 20 21 25 27 | etransclem21 |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) = if ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) , 0 , ( ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) x. ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) ) ) | 
						
							| 33 |  | iftrue |  |-  ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) -> if ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) , 0 , ( ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) x. ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) ) = 0 ) | 
						
							| 34 |  | 0zd |  |-  ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) -> 0 e. ZZ ) | 
						
							| 35 | 33 34 | eqeltrd |  |-  ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) -> if ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) , 0 , ( ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) x. ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) ) e. ZZ ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> if ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) , 0 , ( ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) x. ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) ) e. ZZ ) | 
						
							| 37 |  | 0zd |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> 0 e. ZZ ) | 
						
							| 38 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 39 | 3 38 | syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 40 | 3 | nnnn0d |  |-  ( ph -> P e. NN0 ) | 
						
							| 41 | 39 40 | ifcld |  |-  ( ph -> if ( j = 0 , ( P - 1 ) , P ) e. NN0 ) | 
						
							| 42 | 41 | nn0zd |  |-  ( ph -> if ( j = 0 , ( P - 1 ) , P ) e. ZZ ) | 
						
							| 43 | 42 | ad3antrrr |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> if ( j = 0 , ( P - 1 ) , P ) e. ZZ ) | 
						
							| 44 | 25 | nn0zd |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( ( C ` l ) ` j ) e. ZZ ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( ( C ` l ) ` j ) e. ZZ ) | 
						
							| 46 | 43 45 | zsubcld |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) e. ZZ ) | 
						
							| 47 | 45 | zred |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( ( C ` l ) ` j ) e. RR ) | 
						
							| 48 | 43 | zred |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> if ( j = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 49 |  | simpr |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) | 
						
							| 50 | 47 48 49 | nltled |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( ( C ` l ) ` j ) <_ if ( j = 0 , ( P - 1 ) , P ) ) | 
						
							| 51 | 48 47 | subge0d |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( 0 <_ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) <-> ( ( C ` l ) ` j ) <_ if ( j = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 52 | 50 51 | mpbird |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> 0 <_ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) | 
						
							| 53 |  | 0red |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> 0 e. RR ) | 
						
							| 54 | 25 | nn0red |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( ( C ` l ) ` j ) e. RR ) | 
						
							| 55 | 41 | nn0red |  |-  ( ph -> if ( j = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 56 | 55 | ad2antrr |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> if ( j = 0 , ( P - 1 ) , P ) e. RR ) | 
						
							| 57 | 25 | nn0ge0d |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> 0 <_ ( ( C ` l ) ` j ) ) | 
						
							| 58 | 53 54 56 57 | lesub2dd |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) <_ ( if ( j = 0 , ( P - 1 ) , P ) - 0 ) ) | 
						
							| 59 | 56 | recnd |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> if ( j = 0 , ( P - 1 ) , P ) e. CC ) | 
						
							| 60 | 59 | subid1d |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( if ( j = 0 , ( P - 1 ) , P ) - 0 ) = if ( j = 0 , ( P - 1 ) , P ) ) | 
						
							| 61 | 58 60 | breqtrd |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) <_ if ( j = 0 , ( P - 1 ) , P ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) <_ if ( j = 0 , ( P - 1 ) , P ) ) | 
						
							| 63 | 37 43 46 52 62 | elfzd |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) e. ( 0 ... if ( j = 0 , ( P - 1 ) , P ) ) ) | 
						
							| 64 |  | permnn |  |-  ( ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) e. ( 0 ... if ( j = 0 , ( P - 1 ) , P ) ) -> ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) e. NN ) | 
						
							| 65 | 63 64 | syl |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) e. NN ) | 
						
							| 66 | 65 | nnzd |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) e. ZZ ) | 
						
							| 67 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> J e. ZZ ) | 
						
							| 68 |  | elfzelz |  |-  ( j e. ( 0 ... M ) -> j e. ZZ ) | 
						
							| 69 | 68 | ad2antlr |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> j e. ZZ ) | 
						
							| 70 | 67 69 | zsubcld |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( J - j ) e. ZZ ) | 
						
							| 71 |  | elnn0z |  |-  ( ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) e. NN0 <-> ( ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) e. ZZ /\ 0 <_ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) | 
						
							| 72 | 46 52 71 | sylanbrc |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) e. NN0 ) | 
						
							| 73 |  | zexpcl |  |-  ( ( ( J - j ) e. ZZ /\ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) e. NN0 ) -> ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) e. ZZ ) | 
						
							| 74 | 70 72 73 | syl2anc |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) e. ZZ ) | 
						
							| 75 | 66 74 | zmulcld |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> ( ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) x. ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) e. ZZ ) | 
						
							| 76 | 37 75 | ifcld |  |-  ( ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) /\ -. if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) ) -> if ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) , 0 , ( ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) x. ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) ) e. ZZ ) | 
						
							| 77 | 36 76 | pm2.61dan |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> if ( if ( j = 0 , ( P - 1 ) , P ) < ( ( C ` l ) ` j ) , 0 , ( ( ( ! ` if ( j = 0 , ( P - 1 ) , P ) ) / ( ! ` ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) x. ( ( J - j ) ^ ( if ( j = 0 , ( P - 1 ) , P ) - ( ( C ` l ) ` j ) ) ) ) ) e. ZZ ) | 
						
							| 78 | 32 77 | eqeltrd |  |-  ( ( ( ph /\ l e. dom C ) /\ j e. ( 0 ... M ) ) -> ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) e. ZZ ) | 
						
							| 79 | 15 78 | fprodzcl |  |-  ( ( ph /\ l e. dom C ) -> prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) e. ZZ ) | 
						
							| 80 | 14 79 | fsumzcl |  |-  ( ph -> sum_ l e. dom C prod_ j e. ( 0 ... M ) ( ( ( S Dn ( H ` j ) ) ` ( ( C ` l ) ` j ) ) ` J ) e. ZZ ) | 
						
							| 81 | 31 80 | eqeltrd |  |-  ( ph -> ( G ` J ) e. ZZ ) |