| Step | Hyp | Ref | Expression | 
						
							| 1 |  | etransclem27.s | ⊢ ( 𝜑  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 2 |  | etransclem27.x | ⊢ ( 𝜑  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 3 |  | etransclem27.p | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | etransclem27.h | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 5 |  | etransclem27.cfi | ⊢ ( 𝜑  →  𝐶  ∈  Fin ) | 
						
							| 6 |  | etransclem27.cf | ⊢ ( 𝜑  →  𝐶 : dom  𝐶 ⟶ ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 7 |  | etransclem27.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝑋  ↦  Σ 𝑙  ∈  dom  𝐶 ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 ) ) | 
						
							| 8 |  | etransclem27.jx | ⊢ ( 𝜑  →  𝐽  ∈  𝑋 ) | 
						
							| 9 |  | etransclem27.jz | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  𝐽  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 )  =  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) | 
						
							| 11 | 10 | prodeq2ad | ⊢ ( 𝑥  =  𝐽  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 )  =  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) | 
						
							| 12 | 11 | sumeq2sdv | ⊢ ( 𝑥  =  𝐽  →  Σ 𝑙  ∈  dom  𝐶 ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝑥 )  =  Σ 𝑙  ∈  dom  𝐶 ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) | 
						
							| 13 |  | dmfi | ⊢ ( 𝐶  ∈  Fin  →  dom  𝐶  ∈  Fin ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝜑  →  dom  𝐶  ∈  Fin ) | 
						
							| 15 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 16 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑆  ∈  { ℝ ,  ℂ } ) | 
						
							| 17 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑋  ∈  ( ( TopOpen ‘ ℂfld )  ↾t  𝑆 ) ) | 
						
							| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 19 |  | etransclem5 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑥  ∈  𝑋  ↦  ( ( 𝑥  −  𝑗 ) ↑ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) )  =  ( 𝑧  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑧 ) ↑ if ( 𝑧  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 20 | 4 19 | eqtri | ⊢ 𝐻  =  ( 𝑧  ∈  ( 0 ... 𝑀 )  ↦  ( 𝑦  ∈  𝑋  ↦  ( ( 𝑦  −  𝑧 ) ↑ if ( 𝑧  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝑗  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 22 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  →  ( 𝐶 ‘ 𝑙 )  ∈  ( ℕ0  ↑m  ( 0 ... 𝑀 ) ) ) | 
						
							| 23 |  | elmapi | ⊢ ( ( 𝐶 ‘ 𝑙 )  ∈  ( ℕ0  ↑m  ( 0 ... 𝑀 ) )  →  ( 𝐶 ‘ 𝑙 ) : ( 0 ... 𝑀 ) ⟶ ℕ0 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  →  ( 𝐶 ‘ 𝑙 ) : ( 0 ... 𝑀 ) ⟶ ℕ0 ) | 
						
							| 25 | 24 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 26 | 16 17 18 20 21 25 | etransclem20 | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) : 𝑋 ⟶ ℂ ) | 
						
							| 27 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  𝐽  ∈  𝑋 ) | 
						
							| 28 | 26 27 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 29 | 15 28 | fprodcl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 30 | 14 29 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑙  ∈  dom  𝐶 ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 31 | 7 12 8 30 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐽 )  =  Σ 𝑙  ∈  dom  𝐶 ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 ) ) | 
						
							| 32 | 16 17 18 20 21 25 27 | etransclem21 | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 )  =  if ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 33 |  | iftrue | ⊢ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  →  if ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) )  =  0 ) | 
						
							| 34 |  | 0zd | ⊢ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  →  0  ∈  ℤ ) | 
						
							| 35 | 33 34 | eqeltrd | ⊢ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  →  if ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  if ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 37 |  | 0zd | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  0  ∈  ℤ ) | 
						
							| 38 |  | nnm1nn0 | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 39 | 3 38 | syl | ⊢ ( 𝜑  →  ( 𝑃  −  1 )  ∈  ℕ0 ) | 
						
							| 40 | 3 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 41 | 39 40 | ifcld | ⊢ ( 𝜑  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℕ0 ) | 
						
							| 42 | 41 | nn0zd | ⊢ ( 𝜑  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℤ ) | 
						
							| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℤ ) | 
						
							| 44 | 25 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  ∈  ℤ ) | 
						
							| 46 | 43 45 | zsubcld | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ∈  ℤ ) | 
						
							| 47 | 45 | zred | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 48 | 43 | zred | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 49 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) | 
						
							| 50 | 47 48 49 | nltled | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  ≤  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 51 | 48 47 | subge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( 0  ≤  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ↔  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  ≤  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 52 | 50 51 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  0  ≤  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) | 
						
							| 53 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ∈  ℝ ) | 
						
							| 54 | 25 | nn0red | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 55 | 41 | nn0red | ⊢ ( 𝜑  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℝ ) | 
						
							| 57 | 25 | nn0ge0d | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  0  ≤  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) | 
						
							| 58 | 53 54 56 57 | lesub2dd | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ≤  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  0 ) ) | 
						
							| 59 | 56 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  ∈  ℂ ) | 
						
							| 60 | 59 | subid1d | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  0 )  =  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 61 | 58 60 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ≤  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ≤  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) | 
						
							| 63 | 37 43 46 52 62 | elfzd | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ∈  ( 0 ... if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) ) ) | 
						
							| 64 |  | permnn | ⊢ ( ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ∈  ( 0 ... if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  →  ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ∈  ℕ ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ∈  ℕ ) | 
						
							| 66 | 65 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ∈  ℤ ) | 
						
							| 67 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  𝐽  ∈  ℤ ) | 
						
							| 68 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 69 | 68 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 70 | 67 69 | zsubcld | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( 𝐽  −  𝑗 )  ∈  ℤ ) | 
						
							| 71 |  | elnn0z | ⊢ ( ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ∈  ℕ0  ↔  ( ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ∈  ℤ  ∧  0  ≤  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) | 
						
							| 72 | 46 52 71 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ∈  ℕ0 ) | 
						
							| 73 |  | zexpcl | ⊢ ( ( ( 𝐽  −  𝑗 )  ∈  ℤ  ∧  ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  ∈  ℕ0 )  →  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) )  ∈  ℤ ) | 
						
							| 74 | 70 72 73 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) )  ∈  ℤ ) | 
						
							| 75 | 66 74 | zmulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  ( ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ∈  ℤ ) | 
						
							| 76 | 37 75 | ifcld | ⊢ ( ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  ∧  ¬  if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) )  →  if ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 77 | 36 76 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  if ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  <  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ,  0 ,  ( ( ( ! ‘ if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 ) )  /  ( ! ‘ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) )  ·  ( ( 𝐽  −  𝑗 ) ↑ ( if ( 𝑗  =  0 ,  ( 𝑃  −  1 ) ,  𝑃 )  −  ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ) ) )  ∈  ℤ ) | 
						
							| 78 | 32 77 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 )  ∈  ℤ ) | 
						
							| 79 | 15 78 | fprodzcl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  dom  𝐶 )  →  ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 )  ∈  ℤ ) | 
						
							| 80 | 14 79 | fsumzcl | ⊢ ( 𝜑  →  Σ 𝑙  ∈  dom  𝐶 ∏ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑆  D𝑛  ( 𝐻 ‘ 𝑗 ) ) ‘ ( ( 𝐶 ‘ 𝑙 ) ‘ 𝑗 ) ) ‘ 𝐽 )  ∈  ℤ ) | 
						
							| 81 | 31 80 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐽 )  ∈  ℤ ) |