Metamath Proof Explorer


Theorem mccl

Description: A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses mccl.kb _ k B
mccl.a φ A Fin
mccl.b φ B 0 A
Assertion mccl φ k A B k ! k A B k !

Proof

Step Hyp Ref Expression
1 mccl.kb _ k B
2 mccl.a φ A Fin
3 mccl.b φ B 0 A
4 sumeq1 a = k a b k = k b k
5 4 fveq2d a = k a b k ! = k b k !
6 prodeq1 a = k a b k ! = k b k !
7 5 6 oveq12d a = k a b k ! k a b k ! = k b k ! k b k !
8 7 eleq1d a = k a b k ! k a b k ! k b k ! k b k !
9 8 ralbidv a = b 0 a k a b k ! k a b k ! b 0 a k b k ! k b k !
10 oveq2 a = 0 a = 0
11 10 raleqdv a = b 0 a k b k ! k b k ! b 0 k b k ! k b k !
12 9 11 bitrd a = b 0 a k a b k ! k a b k ! b 0 k b k ! k b k !
13 sumeq1 a = c k a b k = k c b k
14 13 fveq2d a = c k a b k ! = k c b k !
15 prodeq1 a = c k a b k ! = k c b k !
16 14 15 oveq12d a = c k a b k ! k a b k ! = k c b k ! k c b k !
17 16 eleq1d a = c k a b k ! k a b k ! k c b k ! k c b k !
18 17 ralbidv a = c b 0 a k a b k ! k a b k ! b 0 a k c b k ! k c b k !
19 oveq2 a = c 0 a = 0 c
20 19 raleqdv a = c b 0 a k c b k ! k c b k ! b 0 c k c b k ! k c b k !
21 18 20 bitrd a = c b 0 a k a b k ! k a b k ! b 0 c k c b k ! k c b k !
22 sumeq1 a = c d k a b k = k c d b k
23 22 fveq2d a = c d k a b k ! = k c d b k !
24 prodeq1 a = c d k a b k ! = k c d b k !
25 23 24 oveq12d a = c d k a b k ! k a b k ! = k c d b k ! k c d b k !
26 25 eleq1d a = c d k a b k ! k a b k ! k c d b k ! k c d b k !
27 26 ralbidv a = c d b 0 a k a b k ! k a b k ! b 0 a k c d b k ! k c d b k !
28 oveq2 a = c d 0 a = 0 c d
29 28 raleqdv a = c d b 0 a k c d b k ! k c d b k ! b 0 c d k c d b k ! k c d b k !
30 27 29 bitrd a = c d b 0 a k a b k ! k a b k ! b 0 c d k c d b k ! k c d b k !
31 sumeq1 a = A k a b k = k A b k
32 31 fveq2d a = A k a b k ! = k A b k !
33 prodeq1 a = A k a b k ! = k A b k !
34 32 33 oveq12d a = A k a b k ! k a b k ! = k A b k ! k A b k !
35 34 eleq1d a = A k a b k ! k a b k ! k A b k ! k A b k !
36 35 ralbidv a = A b 0 a k a b k ! k a b k ! b 0 a k A b k ! k A b k !
37 oveq2 a = A 0 a = 0 A
38 37 raleqdv a = A b 0 a k A b k ! k A b k ! b 0 A k A b k ! k A b k !
39 36 38 bitrd a = A b 0 a k a b k ! k a b k ! b 0 A k A b k ! k A b k !
40 sum0 k b k = 0
41 40 fveq2i k b k ! = 0 !
42 fac0 0 ! = 1
43 41 42 eqtri k b k ! = 1
44 prod0 k b k ! = 1
45 43 44 oveq12i k b k ! k b k ! = 1 1
46 1div1e1 1 1 = 1
47 45 46 eqtri k b k ! k b k ! = 1
48 1nn 1
49 47 48 eqeltri k b k ! k b k !
50 49 a1i φ b 0 k b k ! k b k !
51 50 ralrimiva φ b 0 k b k ! k b k !
52 nfv b φ c A d A c
53 nfra1 b b 0 c k c b k ! k c b k !
54 52 53 nfan b φ c A d A c b 0 c k c b k ! k c b k !
55 simpll φ c A d A c b 0 c k c b k ! k c b k ! b 0 c d φ c A d A c
56 fveq2 k = j b k = b j
57 56 cbvsumv k c b k = j c b j
58 57 a1i b = e k c b k = j c b j
59 fveq1 b = e b j = e j
60 59 sumeq2sdv b = e j c b j = j c e j
61 58 60 eqtrd b = e k c b k = j c e j
62 61 fveq2d b = e k c b k ! = j c e j !
63 2fveq3 k = j b k ! = b j !
64 63 cbvprodv k c b k ! = j c b j !
65 64 a1i b = e k c b k ! = j c b j !
66 59 fveq2d b = e b j ! = e j !
67 66 prodeq2ad b = e j c b j ! = j c e j !
68 65 67 eqtrd b = e k c b k ! = j c e j !
69 62 68 oveq12d b = e k c b k ! k c b k ! = j c e j ! j c e j !
70 69 eleq1d b = e k c b k ! k c b k ! j c e j ! j c e j !
71 70 cbvralvw b 0 c k c b k ! k c b k ! e 0 c j c e j ! j c e j !
72 71 biimpi b 0 c k c b k ! k c b k ! e 0 c j c e j ! j c e j !
73 72 ad2antlr φ c A d A c b 0 c k c b k ! k c b k ! b 0 c d e 0 c j c e j ! j c e j !
74 simpr φ c A d A c b 0 c k c b k ! k c b k ! b 0 c d b 0 c d
75 2 ad3antrrr φ c A d A c e 0 c j c e j ! j c e j ! b 0 c d A Fin
76 simprl φ c A d A c c A
77 76 ad2antrr φ c A d A c e 0 c j c e j ! j c e j ! b 0 c d c A
78 simprr φ c A d A c d A c
79 78 ad2antrr φ c A d A c e 0 c j c e j ! j c e j ! b 0 c d d A c
80 simpr φ c A d A c e 0 c j c e j ! j c e j ! b 0 c d b 0 c d
81 fveq2 j = k e j = e k
82 81 cbvsumv j c e j = k c e k
83 82 fveq2i j c e j ! = k c e k !
84 2fveq3 j = k e j ! = e k !
85 84 cbvprodv j c e j ! = k c e k !
86 83 85 oveq12i j c e j ! j c e j ! = k c e k ! k c e k !
87 86 eleq1i j c e j ! j c e j ! k c e k ! k c e k !
88 87 ralbii e 0 c j c e j ! j c e j ! e 0 c k c e k ! k c e k !
89 88 biimpi e 0 c j c e j ! j c e j ! e 0 c k c e k ! k c e k !
90 89 ad2antlr φ c A d A c e 0 c j c e j ! j c e j ! b 0 c d e 0 c k c e k ! k c e k !
91 75 77 79 80 90 mccllem φ c A d A c e 0 c j c e j ! j c e j ! b 0 c d k c d b k ! k c d b k !
92 55 73 74 91 syl21anc φ c A d A c b 0 c k c b k ! k c b k ! b 0 c d k c d b k ! k c d b k !
93 92 ex φ c A d A c b 0 c k c b k ! k c b k ! b 0 c d k c d b k ! k c d b k !
94 54 93 ralrimi φ c A d A c b 0 c k c b k ! k c b k ! b 0 c d k c d b k ! k c d b k !
95 94 ex φ c A d A c b 0 c k c b k ! k c b k ! b 0 c d k c d b k ! k c d b k !
96 12 21 30 39 51 95 2 findcard2d φ b 0 A k A b k ! k A b k !
97 nfcv _ k b
98 97 1 nfeq k b = B
99 fveq1 b = B b k = B k
100 99 a1d b = B k A b k = B k
101 98 100 ralrimi b = B k A b k = B k
102 101 sumeq2d b = B k A b k = k A B k
103 102 fveq2d b = B k A b k ! = k A B k !
104 99 fveq2d b = B b k ! = B k !
105 104 a1d b = B k A b k ! = B k !
106 98 105 ralrimi b = B k A b k ! = B k !
107 106 prodeq2d b = B k A b k ! = k A B k !
108 103 107 oveq12d b = B k A b k ! k A b k ! = k A B k ! k A B k !
109 108 eleq1d b = B k A b k ! k A b k ! k A B k ! k A B k !
110 109 rspccva b 0 A k A b k ! k A b k ! B 0 A k A B k ! k A B k !
111 96 3 110 syl2anc φ k A B k ! k A B k !