| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mccl.kb |
|
| 2 |
|
mccl.a |
|
| 3 |
|
mccl.b |
|
| 4 |
|
sumeq1 |
|
| 5 |
4
|
fveq2d |
|
| 6 |
|
prodeq1 |
|
| 7 |
5 6
|
oveq12d |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
ralbidv |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
raleqdv |
|
| 12 |
9 11
|
bitrd |
|
| 13 |
|
sumeq1 |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
prodeq1 |
|
| 16 |
14 15
|
oveq12d |
|
| 17 |
16
|
eleq1d |
|
| 18 |
17
|
ralbidv |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
raleqdv |
|
| 21 |
18 20
|
bitrd |
|
| 22 |
|
sumeq1 |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
prodeq1 |
|
| 25 |
23 24
|
oveq12d |
|
| 26 |
25
|
eleq1d |
|
| 27 |
26
|
ralbidv |
|
| 28 |
|
oveq2 |
|
| 29 |
28
|
raleqdv |
|
| 30 |
27 29
|
bitrd |
|
| 31 |
|
sumeq1 |
|
| 32 |
31
|
fveq2d |
|
| 33 |
|
prodeq1 |
|
| 34 |
32 33
|
oveq12d |
|
| 35 |
34
|
eleq1d |
|
| 36 |
35
|
ralbidv |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
raleqdv |
|
| 39 |
36 38
|
bitrd |
|
| 40 |
|
sum0 |
|
| 41 |
40
|
fveq2i |
|
| 42 |
|
fac0 |
|
| 43 |
41 42
|
eqtri |
|
| 44 |
|
prod0 |
|
| 45 |
43 44
|
oveq12i |
|
| 46 |
|
1div1e1 |
|
| 47 |
45 46
|
eqtri |
|
| 48 |
|
1nn |
|
| 49 |
47 48
|
eqeltri |
|
| 50 |
49
|
a1i |
|
| 51 |
50
|
ralrimiva |
|
| 52 |
|
nfv |
|
| 53 |
|
nfra1 |
|
| 54 |
52 53
|
nfan |
|
| 55 |
|
simpll |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
cbvsumv |
|
| 58 |
57
|
a1i |
|
| 59 |
|
fveq1 |
|
| 60 |
59
|
sumeq2sdv |
|
| 61 |
58 60
|
eqtrd |
|
| 62 |
61
|
fveq2d |
|
| 63 |
|
2fveq3 |
|
| 64 |
63
|
cbvprodv |
|
| 65 |
64
|
a1i |
|
| 66 |
59
|
fveq2d |
|
| 67 |
66
|
prodeq2ad |
|
| 68 |
65 67
|
eqtrd |
|
| 69 |
62 68
|
oveq12d |
|
| 70 |
69
|
eleq1d |
|
| 71 |
70
|
cbvralvw |
|
| 72 |
71
|
biimpi |
|
| 73 |
72
|
ad2antlr |
|
| 74 |
|
simpr |
|
| 75 |
2
|
ad3antrrr |
|
| 76 |
|
simprl |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
|
simprr |
|
| 79 |
78
|
ad2antrr |
|
| 80 |
|
simpr |
|
| 81 |
|
fveq2 |
|
| 82 |
81
|
cbvsumv |
|
| 83 |
82
|
fveq2i |
|
| 84 |
|
2fveq3 |
|
| 85 |
84
|
cbvprodv |
|
| 86 |
83 85
|
oveq12i |
|
| 87 |
86
|
eleq1i |
|
| 88 |
87
|
ralbii |
|
| 89 |
88
|
biimpi |
|
| 90 |
89
|
ad2antlr |
|
| 91 |
75 77 79 80 90
|
mccllem |
|
| 92 |
55 73 74 91
|
syl21anc |
|
| 93 |
92
|
ex |
|
| 94 |
54 93
|
ralrimi |
|
| 95 |
94
|
ex |
|
| 96 |
12 21 30 39 51 95 2
|
findcard2d |
|
| 97 |
|
nfcv |
|
| 98 |
97 1
|
nfeq |
|
| 99 |
|
fveq1 |
|
| 100 |
99
|
a1d |
|
| 101 |
98 100
|
ralrimi |
|
| 102 |
101
|
sumeq2d |
|
| 103 |
102
|
fveq2d |
|
| 104 |
99
|
fveq2d |
|
| 105 |
104
|
a1d |
|
| 106 |
98 105
|
ralrimi |
|
| 107 |
106
|
prodeq2d |
|
| 108 |
103 107
|
oveq12d |
|
| 109 |
108
|
eleq1d |
|
| 110 |
109
|
rspccva |
|
| 111 |
96 3 110
|
syl2anc |
|