Metamath Proof Explorer


Theorem eulplig

Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021)

Ref Expression
Hypothesis eulplig.1 P=G
Assertion eulplig GPligAPBPAB∃!lGAlBl

Proof

Step Hyp Ref Expression
1 eulplig.1 P=G
2 1 isplig GPligGPligaPbPab∃!lGalbllGaPbPabalblaPbPcPlG¬alblcl
3 2 ibi GPligaPbPab∃!lGalbllGaPbPabalblaPbPcPlG¬alblcl
4 simp1 aPbPab∃!lGalbllGaPbPabalblaPbPcPlG¬alblclaPbPab∃!lGalbl
5 simpl a=Ab=Ba=A
6 simpr a=Ab=Bb=B
7 5 6 neeq12d a=Ab=BabAB
8 eleq1 a=AalAl
9 eleq1 b=BblBl
10 8 9 bi2anan9 a=Ab=BalblAlBl
11 10 reubidv a=Ab=B∃!lGalbl∃!lGAlBl
12 7 11 imbi12d a=Ab=Bab∃!lGalblAB∃!lGAlBl
13 12 rspc2gv APBPaPbPab∃!lGalblAB∃!lGAlBl
14 13 com23 APBPABaPbPab∃!lGalbl∃!lGAlBl
15 14 imp APBPABaPbPab∃!lGalbl∃!lGAlBl
16 15 com12 aPbPab∃!lGalblAPBPAB∃!lGAlBl
17 3 4 16 3syl GPligAPBPAB∃!lGAlBl
18 17 imp GPligAPBPAB∃!lGAlBl