Description: Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eulplig.1 | |
|
Assertion | eulplig | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulplig.1 | |
|
2 | 1 | isplig | |
3 | 2 | ibi | |
4 | simp1 | |
|
5 | simpl | |
|
6 | simpr | |
|
7 | 5 6 | neeq12d | |
8 | eleq1 | |
|
9 | eleq1 | |
|
10 | 8 9 | bi2anan9 | |
11 | 10 | reubidv | |
12 | 7 11 | imbi12d | |
13 | 12 | rspc2gv | |
14 | 13 | com23 | |
15 | 14 | imp | |
16 | 15 | com12 | |
17 | 3 4 16 | 3syl | |
18 | 17 | imp | |