Metamath Proof Explorer


Theorem evl1at1

Description: Polynomial evaluation for the 1 scalar. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypotheses evl1at0.o O=eval1R
evl1at0.p P=Poly1R
evl1at1.1 1˙=1R
evl1at1.i I=1P
Assertion evl1at1 RCRingOI1˙=1˙

Proof

Step Hyp Ref Expression
1 evl1at0.o O=eval1R
2 evl1at0.p P=Poly1R
3 evl1at1.1 1˙=1R
4 evl1at1.i I=1P
5 crngring RCRingRRing
6 eqid algScP=algScP
7 2 6 3 4 ply1scl1 RRingalgScP1˙=I
8 5 7 syl RCRingalgScP1˙=I
9 8 eqcomd RCRingI=algScP1˙
10 9 fveq2d RCRingOI=OalgScP1˙
11 10 fveq1d RCRingOI1˙=OalgScP1˙1˙
12 eqid BaseR=BaseR
13 eqid BaseP=BaseP
14 id RCRingRCRing
15 12 3 ringidcl RRing1˙BaseR
16 5 15 syl RCRing1˙BaseR
17 1 2 12 6 13 14 16 16 evl1scad RCRingalgScP1˙BasePOalgScP1˙1˙=1˙
18 17 simprd RCRingOalgScP1˙1˙=1˙
19 11 18 eqtrd RCRingOI1˙=1˙