Metamath Proof Explorer


Theorem evl1vsd

Description: Polynomial evaluation builder for scalar multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses evl1addd.q O = eval 1 R
evl1addd.p P = Poly 1 R
evl1addd.b B = Base R
evl1addd.u U = Base P
evl1addd.1 φ R CRing
evl1addd.2 φ Y B
evl1addd.3 φ M U O M Y = V
evl1vsd.4 φ N B
evl1vsd.s ˙ = P
evl1vsd.t · ˙ = R
Assertion evl1vsd φ N ˙ M U O N ˙ M Y = N · ˙ V

Proof

Step Hyp Ref Expression
1 evl1addd.q O = eval 1 R
2 evl1addd.p P = Poly 1 R
3 evl1addd.b B = Base R
4 evl1addd.u U = Base P
5 evl1addd.1 φ R CRing
6 evl1addd.2 φ Y B
7 evl1addd.3 φ M U O M Y = V
8 evl1vsd.4 φ N B
9 evl1vsd.s ˙ = P
10 evl1vsd.t · ˙ = R
11 eqid algSc P = algSc P
12 1 2 3 11 4 5 8 6 evl1scad φ algSc P N U O algSc P N Y = N
13 eqid P = P
14 1 2 3 4 5 6 12 7 13 10 evl1muld φ algSc P N P M U O algSc P N P M Y = N · ˙ V
15 2 ply1assa R CRing P AssAlg
16 5 15 syl φ P AssAlg
17 2 ply1sca R CRing R = Scalar P
18 5 17 syl φ R = Scalar P
19 18 fveq2d φ Base R = Base Scalar P
20 3 19 eqtrid φ B = Base Scalar P
21 8 20 eleqtrd φ N Base Scalar P
22 7 simpld φ M U
23 eqid Scalar P = Scalar P
24 eqid Base Scalar P = Base Scalar P
25 11 23 24 4 13 9 asclmul1 P AssAlg N Base Scalar P M U algSc P N P M = N ˙ M
26 16 21 22 25 syl3anc φ algSc P N P M = N ˙ M
27 26 eleq1d φ algSc P N P M U N ˙ M U
28 26 fveq2d φ O algSc P N P M = O N ˙ M
29 28 fveq1d φ O algSc P N P M Y = O N ˙ M Y
30 29 eqeq1d φ O algSc P N P M Y = N · ˙ V O N ˙ M Y = N · ˙ V
31 27 30 anbi12d φ algSc P N P M U O algSc P N P M Y = N · ˙ V N ˙ M U O N ˙ M Y = N · ˙ V
32 14 31 mpbid φ N ˙ M U O N ˙ M Y = N · ˙ V