Metamath Proof Explorer


Theorem evls1varpwval

Description: Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. See evl1varpwval . (Contributed by Thierry Arnoux, 24-Jan-2025)

Ref Expression
Hypotheses evls1varpwval.q Q=SevalSub1R
evls1varpwval.u U=S𝑠R
evls1varpwval.w W=Poly1U
evls1varpwval.x X=var1U
evls1varpwval.b B=BaseS
evls1varpwval.e ˙=mulGrpW
evls1varpwval.f ×˙=mulGrpS
evls1varpwval.s φSCRing
evls1varpwval.r φRSubRingS
evls1varpwval.n φN0
evls1varpwval.c φCB
Assertion evls1varpwval φQN˙XC=N×˙C

Proof

Step Hyp Ref Expression
1 evls1varpwval.q Q=SevalSub1R
2 evls1varpwval.u U=S𝑠R
3 evls1varpwval.w W=Poly1U
4 evls1varpwval.x X=var1U
5 evls1varpwval.b B=BaseS
6 evls1varpwval.e ˙=mulGrpW
7 evls1varpwval.f ×˙=mulGrpS
8 evls1varpwval.s φSCRing
9 evls1varpwval.r φRSubRingS
10 evls1varpwval.n φN0
11 evls1varpwval.c φCB
12 eqid BaseW=BaseW
13 2 subrgring RSubRingSURing
14 4 3 12 vr1cl URingXBaseW
15 9 13 14 3syl φXBaseW
16 1 5 3 2 12 8 9 6 7 10 15 11 evls1expd φQN˙XC=N×˙QXC
17 1 4 2 5 8 9 evls1var φQX=IB
18 17 fveq1d φQXC=IBC
19 fvresi CBIBC=C
20 11 19 syl φIBC=C
21 18 20 eqtrd φQXC=C
22 21 oveq2d φN×˙QXC=N×˙C
23 16 22 eqtrd φQN˙XC=N×˙C