Metamath Proof Explorer


Theorem evlvvvallem

Description: Lemma for theorems using evlvvval . Version of evlsvvvallem2 using df-evl . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses evlvvvallem.d D=h0I|h-1Fin
evlvvvallem.p P=ImPolyR
evlvvvallem.b B=BaseP
evlvvvallem.k K=BaseR
evlvvvallem.m M=mulGrpR
evlvvvallem.w ×˙=M
evlvvvallem.x ·˙=R
evlvvvallem.i φIV
evlvvvallem.r φRCRing
evlvvvallem.f φFB
evlvvvallem.a φAKI
Assertion evlvvvallem φfinSupp0RbDFb·˙MvIbv×˙Av

Proof

Step Hyp Ref Expression
1 evlvvvallem.d D=h0I|h-1Fin
2 evlvvvallem.p P=ImPolyR
3 evlvvvallem.b B=BaseP
4 evlvvvallem.k K=BaseR
5 evlvvvallem.m M=mulGrpR
6 evlvvvallem.w ×˙=M
7 evlvvvallem.x ·˙=R
8 evlvvvallem.i φIV
9 evlvvvallem.r φRCRing
10 evlvvvallem.f φFB
11 evlvvvallem.a φAKI
12 eqid ImPolyR𝑠K=ImPolyR𝑠K
13 eqid R𝑠K=R𝑠K
14 eqid BaseImPolyR𝑠K=BaseImPolyR𝑠K
15 9 crngringd φRRing
16 4 subrgid RRingKSubRingR
17 15 16 syl φKSubRingR
18 4 ressid RCRingR𝑠K=R
19 9 18 syl φR𝑠K=R
20 19 oveq2d φImPolyR𝑠K=ImPolyR
21 20 2 eqtr4di φImPolyR𝑠K=P
22 21 fveq2d φBaseImPolyR𝑠K=BaseP
23 22 3 eqtr4di φBaseImPolyR𝑠K=B
24 10 23 eleqtrrd φFBaseImPolyR𝑠K
25 1 12 13 14 4 5 6 7 8 9 17 24 11 evlsvvvallem2 φfinSupp0RbDFb·˙MvIbv×˙Av