Description: Lemma for theorems using evlvvval . Version of evlsvvvallem2 using df-evl . (Contributed by SN, 11-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | evlvvvallem.d | |
|
evlvvvallem.p | |
||
evlvvvallem.b | |
||
evlvvvallem.k | |
||
evlvvvallem.m | |
||
evlvvvallem.w | |
||
evlvvvallem.x | |
||
evlvvvallem.i | |
||
evlvvvallem.r | |
||
evlvvvallem.f | |
||
evlvvvallem.a | |
||
Assertion | evlvvvallem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlvvvallem.d | |
|
2 | evlvvvallem.p | |
|
3 | evlvvvallem.b | |
|
4 | evlvvvallem.k | |
|
5 | evlvvvallem.m | |
|
6 | evlvvvallem.w | |
|
7 | evlvvvallem.x | |
|
8 | evlvvvallem.i | |
|
9 | evlvvvallem.r | |
|
10 | evlvvvallem.f | |
|
11 | evlvvvallem.a | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 9 | crngringd | |
16 | 4 | subrgid | |
17 | 15 16 | syl | |
18 | 4 | ressid | |
19 | 9 18 | syl | |
20 | 19 | oveq2d | |
21 | 20 2 | eqtr4di | |
22 | 21 | fveq2d | |
23 | 22 3 | eqtr4di | |
24 | 10 23 | eleqtrrd | |
25 | 1 12 13 14 4 5 6 7 8 9 17 24 11 | evlsvvvallem2 | |