Metamath Proof Explorer


Theorem ex-res

Description: Example for df-res . Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Assertion ex-res F=2639B=12FB=26

Proof

Step Hyp Ref Expression
1 simpl F=2639B=12F=2639
2 df-pr 2639=2639
3 1 2 eqtrdi F=2639B=12F=2639
4 3 reseq1d F=2639B=12FB=2639B
5 resundir 2639B=26B39B
6 4 5 eqtrdi F=2639B=12FB=26B39B
7 2re 2
8 7 elexi 2V
9 6re 6
10 9 elexi 6V
11 8 10 relsnop Rel26
12 dmsnopss dom262
13 snsspr2 212
14 simpr F=2639B=12B=12
15 13 14 sseqtrrid F=2639B=122B
16 12 15 sstrid F=2639B=12dom26B
17 relssres Rel26dom26B26B=26
18 11 16 17 sylancr F=2639B=1226B=26
19 1re 1
20 1lt3 1<3
21 19 20 gtneii 31
22 2lt3 2<3
23 7 22 gtneii 32
24 21 23 nelpri ¬312
25 14 eleq2d F=2639B=123B312
26 24 25 mtbiri F=2639B=12¬3B
27 ressnop0 ¬3B39B=
28 26 27 syl F=2639B=1239B=
29 18 28 uneq12d F=2639B=1226B39B=26
30 un0 26=26
31 29 30 eqtrdi F=2639B=1226B39B=26
32 6 31 eqtrd F=2639B=12FB=26